Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T13:33:49.965Z Has data issue: false hasContentIssue false

Greatly enhanced magneto-dielectric performance of the Ni0.5Zn0.5Fe2O4/polyvinylidene fluoride composites with annealed ferrite powders for antenna applications

Published online by Cambridge University Press:  28 November 2016

Li He*
Affiliation:
School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China
Jing Liu
Affiliation:
School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China
Hongwei Xie
Affiliation:
School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China
Chao Zhang
Affiliation:
School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China
*
a) Address all correspondence to this author. e-mail: heli@xaut.edu.cn
Get access

Abstract

A series of Ni0.5Zn0.5Fe2O4 (NZO)/polyvinylidene fluoride (PVDF) composites were prepared and studied for their potential application as magneto-dielectric antenna substrate materials. The NZO ferrite powders were synthesized by the solid-state reaction method and then annealed at different temperatures of 700, 900 and 1100 °C. The influence of the annealing treatment on the grain size, crystallinity and magneto-dielectric properties were discussed. The magnetic and dielectric properties of the composites were measured in 1 MHz–1 GHz and 100 Hz–1 GHz, respectively. With the annealing temperature increase from 700 to 1100 °C, the initial permeability of the composites increases from 3.89 to 7.93, while the static permittivity changed regularly with the growing grain size. Almost equal values of μ′ and ε′ are obtained in the composite sample with the 1100 °C annealed NZO powders. Considering the relatively low magnetic and dielectric loss tangent, this material is the promising candidate for the design of miniaturized antennas.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kong, L.B., Li, Z.W., Liu, L., Huang, R., Abshinova, M., Yang, Z.H., Tang, C.B., Tan, P.K., Deng, C.R., and Matitsine, S.: Recent progress in some composite materials and structures for specific electromagnetic applications. Int. Mater. Rev. 58, 203 (2013).CrossRefGoogle Scholar
Yan, S.J., Zhen, L., Xu, C.Y., Jiang, J.T., Shao, W.Z., and Tang, J.K.: Synthesis, characterization and electromagnetic properties of Fe1−x Co x alloy flower-like microparticles. J. Magn. Magn. Mater. 323, 515 (2011).Google Scholar
Lee, J., Hong, Y.K., Bae, S., Jalli, J., Abo, G.S., Park, J., Seong, W.M., Park, S.H., and Ahn, W.K.: Low loss Co2Z Ba3Co2Fe24O41-glass composite for gigahertz antenna application. J. Appl. Phys. 109, 07E530 (2011).Google Scholar
Keun, J.J., Ki, A.W., Sig, K.J., Hoon, P.S., Ho, K.G., and Mo, S.W.: Miniaturized T-DMB antenna with a low-loss Ni–Mn–Co ferrite for mobile handset applications. IEEE Magn. Lett. 1, 5000104 (2010).Google Scholar
Borah, K. and Bhattacharyya, N.S.: Magnetodielectric composite with ferrite inclusions as substrates for microstrip patch antennas at microwave frequencies. Composites, Part B 43, 1309 (2012).Google Scholar
Thakur, A., Chevalier, A., Mattei, J.L., and Queffelec, P.: Low-loss spinel nanoferrite with matching permeability and permittivity in the ultrahigh frequency range. J. Appl. Phys. 108, 014301 (2010).Google Scholar
Shirakata, Y., Hidaka, N., Ishitsuka, M., Teramoto, A., and Ohmi, T.: High permeability and low loss Ni–Fe composite material for high-frequency applications. IEEE Trans. Magn. 44, 2100 (2008).Google Scholar
Fu, L.S., Jiang, J.T., Xu, C.Y., and Zhen, L.: Synthesis of hexagonal Fe microflakes with excellent microwave absorption performance. CrystEngComm 14, 6827 (2012).Google Scholar
Bellucci, F.S., Lobato de Almeida, F.C., Lima Nobre, M.A., Angel Rodriguez-Perez, M., Paschoalini, A.T., and Job, A.E.: Magnetic properties of vulcanized natural rubber nanocomposites as a function of the concentration, size and shape of the magnetic fillers. Composites, Part B 85, 196 (2016).Google Scholar
Wen, S.L., Liu, Y., and Zhao, X.C.: Effect of annealing on electromagnetic performance and microwave absorption of spherical cobalt particles. J. Phys. D: Appl. Phys. 48, 405001 (2015).CrossRefGoogle Scholar
Guo, Y.P., Liu, Y., Wang, J.L., Withers, R.L., Chen, H., Jin, L., and Smith, P.: Giant magnetodielectric effect in 0-3Ni0.5Zn0.5Fe2O4-poly(vinylidene-fluoride) nanocomposite films. J. Phys. Chem. C. 114, 13861 (2010).CrossRefGoogle Scholar
Martins, P., Costa, C.M., Botelho, G., Lanceros-Mendez, S., Barandiaran, J.M., and Gutierrez, J.: Dielectric and magnetic properties of ferrite/poly(vinylidene fluoride) nanocomposites. Mater. Chem. Phys. 131, 698 (2012).Google Scholar
Azhagushanmugam, S.J., Suriyanarayanan, N., and Jayaprakash, R.: Effect of cation distribution on structural and magnetic properties of nickel cobalt zinc ferrites. Adv. Mater. Sci. Eng. 2013, 713684 (2013).Google Scholar
Zheng, Z.L., Zhang, H.W., Xiao, J.Q., Yang, Q.H., and Jia, L.J.: Low loss NiZn spinel ferrite-W-type hexaferrite composites from BaM addition for antenna applications. J. Phys. D: Appl. Phys. 47, 115001 (2014).Google Scholar
Zou, P., Yu, W., and Bain, J.A.: Influence of stress and texture on soft magnetic properties of thin films. IEEE Trans. Magn. 38, 3501 (2002).Google Scholar
Staunton, J.B., Szunyogh, L., Buruzs, A., Gyorffy, B.L., Ostanin, S., and Udvardi, L.: Temperature dependence of magnetic anisotropy: An ab initio approach. Phys. Rev. B. 74, 144411 (2006).Google Scholar
Moyet, R.P., Cardona, Y., Vargas, P., Silva, J., and Uwakweh, O.N.C.: Coercivity and superparamagnetic evolution of high energy ball milled (HEBM) bulk CoFe2O4 material. Mater. Charact. 61, 1317 (2010).Google Scholar
Abdoli, H., Ghanbari, M., and Baghshahi, S.: Thermal stability of nanostructured aluminum powder synthesized by high-energy milling. Mater. Sci. Eng., A 528, 6702 (2011).Google Scholar
Fang, X., Wang, Z.L., Zhang, N., and Mao, J.M.: Giant uniaxial stress-permeability effect on electrical parameters of heterotypic MnZn ferrite devices and electromagnetic effect. Magn. Magn. Mater. 321, 2859 (2009).CrossRefGoogle Scholar
Igarashi, H. and Okazaki, K.: Effects of porosity and grain-size on magnetic-properties of NiZn ferrite. J. Am. Ceram. Soc. 60, 51 (1977).Google Scholar
Clausell, C., Barba, A., Nuno, L., and Jarque, J.C.: Effect of average grain size and sintered relative density on the imaginary part—mu″ of the complex magnetic permeability of (Cu0.12Ni0.23Zn0.65) Fe2O4 system. Ceram. Int. 42, 4256 (2016).Google Scholar
Beitollahi, A. and Hoor, M.: Effect of sintering temperature on the microstructure and high-frequency magnetic properties of Ni0.467Zn0.07Co0.015Fe0.511O4 ferrite. J. Mater. Sci.: Mater. Electron. 14, 477 (2003).Google Scholar
Deka, S. and Joy, P.A.: Enhanced permeability and dielectric constant of NiZn ferrite synthesized in nanocrystalline form by a combustion method. J. Am. Ceram. Soc. 90, 1494 (2007).Google Scholar
Sakellari, D., Tsakaloudi, V., Polychroniadis, E.K., and Zaspalis, V.: Microstructural phenomena controlling losses in NiCuZn-ferrites as studied by transmission electron microscopy. J. Am. Ceram. Soc. 91, 366 (2008).Google Scholar
Larsen, P.K. and Metsleaa, R.: Electric and dielectric properties of polycrystalline yttrium iron-garnet space-charge-limited currents in an inhomogeneous solid. Phys. Rev. B 8, 2016 (1973).Google Scholar
Dang, Z.M., Wang, H.Y., Peng, B., and Nan, C.W.: Effect of BaTiO3 size on dielectric property of BaTiO3/PVDF composites. J. Electroceram. 21, 381 (2008).Google Scholar
Kong, L.B., Li, Z.W., Lin, G.Q., and Gan, Y.B.: Ni–Zn ferrites composites with almost equal values of permeability and permittivity for low-frequency antenna design. IEEE Trans. Magn. 43, 6 (2007).Google Scholar
Su, Z., Chang, H., Wang, X., Sokolov, A.S., Hu, B., Chen, Y., and Harris, V.G.: Low loss factor Co2Z ferrite composites with equivalent permittivity and permeability for ultra-high frequency applications. Appl. Phys. Lett. 105, 062402 (2014).Google Scholar
Fawzi, A.S., Sheikh, A.D., and Mathe, V.L.: Structural, dielectric properties and AC conductivity of Ni1−x Zn x Fe2O4 spinel ferrites. J. Alloys Compd. 502, 231 (2010).Google Scholar
Yadav, S.P., Shinde, S.S., Kadam, A.A., and Rajpure, K.Y.: Structural, morphological, dielectrical, magnetic and impedance properties of Co1−x Mn x Fe2O4 . J. Alloys Compd. 555, 330 (2013).Google Scholar
Berthelot, R., Basly, B., Buffiere, S., Majimel, J., Chevallier, G., Weibel, A., Veillere, A., Etienne, L., Chung, U.C., Goglio, G., Maglione, M., Estournes, C., Mornet, S., and Elissalde, C.: From core–shell BaTiO3@MgO to nanostructured low dielectric loss ceramics by spark plasma sintering. J. Mater. Chem. C 2, 683 (2014).Google Scholar
Iqbal, M.A., Islam, M.U., Ali, I., Khan, M.A., Sadiq, I., and Ali, I.: High frequency dielectric properties of Eu3+-substituted Li–Mg ferrites synthesized by sol-gel auto-combustion method. J. Alloys Compd. 586, 404 (2014).Google Scholar
Chen, W.S., Chang, Y.L., Hsiang, H.I., Hsu, F.C., and Yen, F.S.: Effects of titanate coupling agent on the dielectric properties of NiZn ferrite powders-epoxy resin coatings. Ceram. Int. 37, 2347 (2011).Google Scholar
Souriou, D., Mattei, J.L., Chevalier, A., and Queffelec, P.: Influential parameters on electromagnetic properties of nickel–zinc ferrites for antenna miniaturization. J. Appl. Phys. 107, 09A518 (2010).CrossRefGoogle Scholar