Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T17:46:57.747Z Has data issue: false hasContentIssue false

Linking assumptions in amblyopia

Published online by Cambridge University Press:  24 July 2013

DENNIS M. LEVI*
Affiliation:
School of Optometry & Helen Wills Neuroscience Institute, University of California, Berkeley, California
*
*Address correspondence to: Dennis M. Levi, School of Optometry & Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720-2020. E-mail: dlevi@berkeley.edu

Abstract

Over the last 35 years or so, there has been substantial progress in revealing and characterizing the many interesting and sometimes mysterious sensory abnormalities that accompany amblyopia. A goal of many of the studies has been to try to make the link between the sensory losses and the underlying neural losses, resulting in several hypotheses about the site, nature, and cause of amblyopia. This article reviews some of these hypotheses, and the assumptions that link the sensory losses to specific physiological alterations in the brain. Despite intensive study, it turns out to be quite difficult to make a simple linking hypothesis, at least at the level of single neurons, and the locus of the sensory loss remains elusive. It is now clear that the simplest notion—that reduced contrast sensitivity of neurons in cortical area V1 explains the reduction in contrast sensitivity—is too simplistic. Considerations of noise, noise correlations, pooling, and the weighting of information also play a critically important role in making perceptual decisions, and our current models of amblyopia do not adequately take these into account. Indeed, although the reduction of contrast sensitivity is generally considered to reflect “early” neural changes, it seems plausible that it reflects changes at many stages of visual processing.

Type
Linking performance and neural mechanisms in development and disability
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaen-Stockdale, C. & Hess, R.F. (2008). The amblyopic deficit for global motion is spatial scale invariant. Vision Research 48, 19651971.CrossRefGoogle ScholarPubMed
Aaen-Stockdale, C., Ledgeway, T. & Hess, R.F. (2007). Second-order optic flow deficits in amblyopia. Investigative Ophthalmology and Visual Science 48, 55325538.CrossRefGoogle ScholarPubMed
Astle, A.T., Webb, B.S. & McGraw, P.V. (2011). Can perceptual learning be used to treat amblyopia beyond the critical period of visual development? Ophthalmic and Physiological Optics 31, 564573.CrossRefGoogle ScholarPubMed
Barlow, H.B. (1957). Increment thresholds at low intensities considered as signal/noise discriminations. Journal of Physiology 136, 469488.CrossRefGoogle ScholarPubMed
Barnes, G.R., Hess, R.F., Dumoulin, S.O., Achtman, R.L. & Pike, G.B. (2001). The cortical deficit in humans with strabismic amblyopia. Journal of Physiology 533, 281297.CrossRefGoogle ScholarPubMed
Barnes, G.R., Li, X., Thompson, B., Singh, K.D., Dumoulin, S.O. & Hess, R.F. (2010). Decreased gray matter concentration in the lateral geniculate nuclei in human amblyopes. Investigative Ophthalmology and Visual Science 51, 14321438.CrossRefGoogle ScholarPubMed
Baroncelli, L., Maffei, L. & Sale, A. (2011). New perspectives in amblyopia therapy on adults: A critical role for the excitatory/inhibitory balance. Frontiers in Cellular Neuroscience 5, 25.CrossRefGoogle Scholar
Barrett, B.T., Pacey, I.E., Bradley, A., Thibos, L.N. & Morrill, P. (2003). Nonveridical visual perception in human amblyopia. Investigative Ophthalmology and Visual Science 44, 15551567.CrossRefGoogle ScholarPubMed
Bavelier, D., Levi, D.M., Li, R.W., Dan, Y. & Hensch, T.K. (2010). Removing brakes on adult brain plasticity: From molecular to behavioral interventions. Journal of Neuroscience 30, 1496414971.CrossRefGoogle ScholarPubMed
Bi, H., Zhang, B., Tao, X., Harwerth, R.S., Smith, E.L. III & Chino, Y.M. (2011). Neuronal responses in visual area V2 (V2) of macaque monkeys with strabismic amblyopia. Cerebral Cortex 21, 20332045.CrossRefGoogle ScholarPubMed
Bonhomme, G.R., Liu, G.T., Miki, A., Francis, E., Dobre, M.C., Modestino, E.J., Aleman, D.O., & Haselgrove, J.C. (2006). Decreased cortical activation in response to a motion stimulus in anisometropic amblyopic eyes using functional magnetic resonance imaging. Journal of AAPOS: The Official Publication of the American Association for Pediatric Ophthalmology and Strabismus 10, 540546.CrossRefGoogle ScholarPubMed
Bonneh, Y.S., Sagi, D. & Polat, U. (2007). Spatial and temporal crowding in amblyopia. Vision Research 47, 19501962.CrossRefGoogle ScholarPubMed
Bradley, A. & Freeman, R.D. (1981). Contrast sensitivity in anisometropic amblyopia. Investigative Ophthalmology and Visual Science 21, 467476.Google ScholarPubMed
Burgess, A.E. & Colborne, B. (1988). Visual signal detection. IV. Observer inconsistency. Journal of the Optical Society of America. A, Optics and Image Science 5, 617627.CrossRefGoogle ScholarPubMed
Chandna, A., Pennefather, P.M., Kovacs, I. & Norcia, A.M. (2001). Contour integration deficits in anisometropic amblyopia. Investigative Ophthalmology and Visual Science 42, 875878.Google ScholarPubMed
Chung, S.T., Li, R.W. & Levi, D.M. (2006). Identification of contrast-defined letters benefits from perceptual learning in adults with amblyopia. Vision Research 46, 38533861.CrossRefGoogle ScholarPubMed
Cohen, M.R. & Newsome, W.T. (2009). Estimates of the contribution of single neurons to perception depend on timescale and noise correlation. Journal of Neuroscience 29, 66356648.CrossRefGoogle ScholarPubMed
Conner, I.P., Odom, J.V., Schwartz, T.L. & Mendola, J.D. (2007). Monocular activation of V1 and V2 in amblyopic adults measured with functional magnetic resonance imaging. Journal of AAPOS: The Official Publication of the American Association for Pediatric Ophthalmology and Strabismus 11, 341350.CrossRefGoogle ScholarPubMed
Constantinescu, T., Schmidt, L., Watson, R. & Hess, R.F. (2005). A residual deficit for global motion processing after acuity recovery in deprivation amblyopia. Investigative Ophthalmology and Visual Science 46, 30083012.CrossRefGoogle ScholarPubMed
Dallala, R., Wang, Y.Z. & Hess, R.F. (2010). The global shape detection deficit in strabismic amblyopia: Contribution of local orientation and position. Vision Research 50, 16121617.CrossRefGoogle ScholarPubMed
Demanins, R. & Hess, R.F. (1998). Positional loss in strabismic amblyopia: Inter-relationship of alignment threshold, bias, spatial scale and eccentricity. Vision Research 36, 27712794.CrossRefGoogle Scholar
Eggers, H.M. & Blakemore, C. (1978). Physiological basis of anisometropic amblyopia. Science 201, 264267.CrossRefGoogle ScholarPubMed
Ellemberg, D., Lewis, T.L., Maurer, D., Brar, S. & Brent, H.P. (2002). Better perception of global motion after monocular than after binocular deprivation. Vision Research 42, 169179.CrossRefGoogle ScholarPubMed
El-Shamayleh, Y., Kiorpes, L., Kohn, A. & Movshon, J.A. (2010). Visual motion processing by neurons in area MT of macaque monkeys with experimental amblyopia. Journal of Neuroscience 30, 1219812209.CrossRefGoogle ScholarPubMed
Farzin, F. & Norcia, A.M. (2011). Impaired visual decision-making in individuals with amblyopia. Journal of Vision 11, (14). pii: 6. doi: 10.1167/11.14.6.CrossRefGoogle ScholarPubMed
Field, D.J. & Hess, R.F. (1996). Uncalibrated distortions vs undersampling. Vision Research 36, 21212124.CrossRefGoogle ScholarPubMed
Flom, M.C., Weymouth, F.W. & Kahneman, D. (1963). Visual resolution and contour interaction. Journal of Optical Society of America 53, 10261032.CrossRefGoogle ScholarPubMed
Gold, J.M., Bennett, P.J. & Sekuler, A.B. (1999). Signal but not noise changes with perceptual learning. Nature 402, 176178.CrossRefGoogle Scholar
Gold, J.M., Murray, R.F., Bennett, P.J. & Sekuler, A.B. (2000). Deriving behavioural receptive fields for visually completed contours. Current Biology: CB 10, 663666.CrossRefGoogle ScholarPubMed
Goodyear, B.G., Nicolle, D.A., Humphrey, G.K. & Menon, R.S. (2000). BOLD fMRI response of early visual areas to perceived contrast in human amblyopia. Journal of Neurophysiology 84, 19071913.CrossRefGoogle ScholarPubMed
Graham, N. (1989). Visual Pattern Analyzers. New York: Oxford University Press.CrossRefGoogle Scholar
Green, D.M. (1964). Consistency of auditory detection judgements. Psychological Review 71, 392407.CrossRefGoogle Scholar
Hariharan, S., Levi, D.M. & Klein, S.A. (2005). “Crowding” in normal and amblyopic vision assessed with Gaussian and Gabor C’s. Vision Research 45, 617633.CrossRefGoogle ScholarPubMed
Harwerth, R.S. & Smith, E.L. III (1985). Rhesus monkey as a model for normal vision of humans. American Journal of Optometry and Physiological Optics 62, 633641.CrossRefGoogle Scholar
Hayward, J., Truong, G., Partanen, M. & Giaschi, D. (2011). Effects of speed, age, and amblyopia on the perception of motion-defined form. Vision Research 51, 22162223.CrossRefGoogle ScholarPubMed
Hess, R.F. (1980). A preliminary investigation of neural function and dysfunction in amblyopia–I. Size-selective channels. Vision Research 20, 749754.CrossRefGoogle ScholarPubMed
Hess, R.F. (1982). Developmental sensory impairment: Amblyopia or tarachopia. Human Neurobiology 1, 1729.Google ScholarPubMed
Hess, R.F. & Bradley, A. (1980). Contrast perception above threshold is only minimally impaired in human amblyopia. Nature 287, 463464.CrossRefGoogle ScholarPubMed
Hess, R.F., Bradley, A. & Piotrowski, L. (1983). Contrast-coding in amblyopia. I. Differences in the neural basis of human amblyopia. Proceedings of the Royal Society of London. Series B, Biological Sciences. Royal Society 217, 309330.Google ScholarPubMed
Hess, R.F., Campbell, F.W. & Greenhalgh, T. (1978). On the nature of the neural abnormality in human amblyopia; neural aberrations and neural sensitivity loss. Pflugers Archiv: European Journal of Physiology 377, 201207.CrossRefGoogle ScholarPubMed
Hess, R.F. & Demanins, R. (1998). Contour integration in anisometropic amblyopia. Vision Research 38, 889894.CrossRefGoogle ScholarPubMed
Hess, R.F. & Field, D.J. (1994). Is the spatial deficit in strabismic amblyopia due to loss of cells or an uncalibrated disarray of cells? Vision Research 34, 33973406.CrossRefGoogle ScholarPubMed
Hess, R.F. & Holliday, I.E. (1992). The spatial localization deficit in amblyopia. Vision Research 32, 13191339.CrossRefGoogle ScholarPubMed
Hess, R.F. & Howell, E.R. (1977). The threshold contrast sensitivity function in strabismic amblyopia: Evidence for a two type classification. Vision Research 17, 10491055.CrossRefGoogle ScholarPubMed
Hess, R.F. & Jacobs, R.J. (1979). A preliminary report of acuity and contour interactions across the amblyope’s visual field. Vision Research 19, 14031408.CrossRefGoogle ScholarPubMed
Hess, R.F., McIlhagga, W. & Field, D. (1997 b). Contour integration in strabismic amblyopia: The sufficiency of an explanation based on positional uncertainty. Vision Research 37, 31453316.CrossRefGoogle ScholarPubMed
Hess, R.F., Thompson, B., Gole, G. & Mullen, K.T. (2009). Deficient responses from the lateral geniculate nucleus in humans with amblyopia. The European Journal of Neuroscience 29, 10641070.CrossRefGoogle ScholarPubMed
Hess, R.F., Wang, Y.Z., Demanins, R., Wilkinson, F. & Wilson, H.R. (1999). A deficit in strabismic amblyopia for global shape detection. Vision Research 39, 901914.CrossRefGoogle ScholarPubMed
Ho, C.S. & Giaschi, D. (2006). Deficient maximum motion displacement in amblyopia. Vision Research 46, 45954603.CrossRefGoogle ScholarPubMed
Ho, C.S. & Giaschi, D. (2007). Stereopsis-dependent deficits in maximum motion displacement in strabismic and anisometropic amblyopia. Vision Research 47, 27782785.CrossRefGoogle ScholarPubMed
Ho, C.S. & Giaschi, D. (2009). Low- and high-level motion perception deficits in anisometropic and strabismic amblyopia: Evidence from fMRI. Vision Research 49, 28912901.CrossRefGoogle ScholarPubMed
Ho, C.S., Paul, P.S., Asirvatham, A., Cavanagh, P., Cline, R. & Giaschi, D.E. (2006). Abnormal spatial selection and tracking in children with amblyopia. Vision Research 46, 32743283.CrossRefGoogle ScholarPubMed
Hou, C., Pettet, M.W. & Norcia, A.M. (2008). Abnormalities of coherent motion processing in strabismic amblyopia: Visual-evoked potential measurements. Journal of Vision 8, 112.CrossRefGoogle ScholarPubMed
Huang, C.B., Lu, Z.L. & Zhou, Y. (2009). Mechanisms underlying perceptual learning of contrast detection in adults with anisometropic amblyopia. Journal of Vision 9, 24.124.14. doi: 10.1167/9.11.24.CrossRefGoogle ScholarPubMed
Hubel, D.H. & Wiesel, T.N. (1965). Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. Journal of Neurophysiology 28, 10291040.Google Scholar
Hubel, D.H., Wiesel, T.N. & LeVay, S. (1977). Plasticity of ocular dominance columns in monkey striate cortex. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 278, 377409.Google ScholarPubMed
Ikeda, H. & Tremain, K.E. (1978). Amblyopia resulting from penalisation: Neurophysiological studies of kittens reared with atropinisation of one or both eyes. The British Journal of Ophthalmology 62, 2128.CrossRefGoogle ScholarPubMed
Ikeda, H. & Wright, M.J. (1976). Properties of LGN cells in kittens reared with convergent squint: A neurophysiological demonstration of amblyopia. Experimental Brain Research. Experimentelle Hirnforschung. Experimentation Cerebrale 25, 6377.CrossRefGoogle ScholarPubMed
Imamura, K., Richter, H., Fischer, H., Lennerstrand, G., Franzen, O., Rydberg, A., Andersson, J., Schneider, H., Onoe, H., Watanabe, Y. & Langstrom, B. (1997). Reduced activity in the extrastriate visual cortex of individuals with strabismic amblyopia. Neuroscience Letters 225, 173176.CrossRefGoogle ScholarPubMed
Kind, P.C., Mitchell, D.E., Ahmed, B., Blakemore, C., Bonhoeffer, T. & Sengpiel, F. (2002). Correlated binocular activity guides recovery from monocular deprivation. Nature 416, 430433.CrossRefGoogle ScholarPubMed
Kiorpes, L. (2006). Visual processing in amblyopia: Animal studies. Strabismus 14, 310.CrossRefGoogle ScholarPubMed
Kiorpes, L., Kiper, D.C., O’Keefe, L.P., Cavanaugh, J.R. & Movshon, J.A. (1998). Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia. Journal of Neuroscience 18, 64116424.CrossRefGoogle ScholarPubMed
Kiorpes, L. & McKee, S.P. (1999). Neural mechanisms underlying amblyopia. Current Opinion in Neurobiology 9, 480486.CrossRefGoogle ScholarPubMed
Kozma, P. & Kiorpes, L. (2003). Contour integration in amblyopic monkeys. Visual Neuroscience 20, 577588.CrossRefGoogle ScholarPubMed
Lagreze, W.D. & Sireteanu, R. (1992). [Errors of monocular localization in strabismic amblyopia. Two-dimensional distortion]. Klin Monbl Augenheilkd 201, 9296.Google ScholarPubMed
Lerner, Y., Hendler, T., Malach, R., Harel, M., Leiba, H., Stolovitch, C. & Pianka, P. (1996). Selective fovea-related deprived activation in retinotopic and high-order visual cortex of human amblyopes. Neuroimage 33, 169179.CrossRefGoogle Scholar
Levi, D.M. (2006). Visual processing in amblyopia: Human studies. Strabismus 14, 1119.CrossRefGoogle ScholarPubMed
Levi, D.M. (2012). Prentice award lecture 2011: Removing the brakes on plasticity in the amblyopic brain. Optometry and Vision Science: Official Publication of the American Academy of Optometry 89, 827838.CrossRefGoogle ScholarPubMed
Levi, D.M. & Harwerth, R.S. (1977). Spatio-temporal interactions in anisometropic and strabismic amblyopia. Investigative Ophthalmology and Visual Science 16, 9095.Google ScholarPubMed
Levi, D.M. & Harwerth, R.S. (1978). Contrast evoked potentials in strabismic and anisometropic amblyopia. Investigative Ophthalmology and Visual Science 17, 571575.Google ScholarPubMed
Levi, D.M. & Harwerth, R.S. (1982). Psychophysical mechanisms in humans with amblyopia. American Journal of Optometry and Physiological Optics 59, 936951.CrossRefGoogle ScholarPubMed
Levi, D.M., Hariharan, S. & Klein, S.A. (2002). Suppressive and facilitatory spatial interactions in amblyopic vision. Vision Research 42, 13791394.CrossRefGoogle ScholarPubMed
Levi, D.M., Harwerth, R.S. & Smith, E.L. III (1979). Humans deprived of normal binocular vision have binocular interactions tuned to size and orientation. Science 206, 852854.CrossRefGoogle ScholarPubMed
Levi, D.M. & Klein, S. (1982 a). Hyperacuity and amblyopia. Nature 298, 268270.CrossRefGoogle ScholarPubMed
Levi, D.M. & Klein, S. (1982 b). Differences in vernier discrimination for grating between strabismic and anisometropic amblyopes. Investigative Ophthalmology and Visual Science 23, 398407.Google ScholarPubMed
Levi, D.M. & Klein, S.A. (1983). Spatial localization in normal and amblyopic vision. Vision Research 23, 10051017.CrossRefGoogle ScholarPubMed
Levi, D.M. & Klein, S.A. (1985). Vernier acuity, crowding and amblyopia. Vision Research 25, 979991.CrossRefGoogle ScholarPubMed
Levi, D.M. & Klein, S.A. (1986). Sampling in spatial vision. Nature 320, 360362.CrossRefGoogle ScholarPubMed
Levi, D.M. & Klein, S.A. (1996). Limitations on position coding imposed by undersampling and univariance. Vision Research 36, 21112120.CrossRefGoogle ScholarPubMed
Levi, D.M. & Klein, S.A. (2003). Noise provides some new signals about the spatial vision of amblyopes. Journal of Neuroscience 23, 25222526.CrossRefGoogle ScholarPubMed
Levi, D.M., Klein, S.A. & Chen, I. (2005 a). What is the signal in noise? Vision Research 45, 18351846.CrossRefGoogle ScholarPubMed
Levi, D.M., Klein, S.A. & Chen, I. (2007 a). The response of the amblyopic visual system to noise. Vision Research 47, 25312542.CrossRefGoogle ScholarPubMed
Levi, D.M., Klein, S.A. & Chen, I. (2008). What limits performance in the amblyopic visual system: Seeing signals in noise with an amblyopic brain. Journal of Vision 8, 123.CrossRefGoogle ScholarPubMed
Levi, D.M., Klein, S.A., Sharma, V. & Nguyen, L. (2000). Detecting disorder in spatial vision. Vision Research 40, 23072327.CrossRefGoogle ScholarPubMed
Levi, D.M., Klein, S.A. & Wang, H. (1994 a). Amblyopic and peripheral vernier acuity: A test-pedestal approach. Vision Research 34, 32653292.CrossRefGoogle ScholarPubMed
Levi, D.M., Klein, S.A. & Wang, H. (1994 b). Discrimination of position and contrast in amblyopic and peripheral vision. Vision Research 34, 32933313.CrossRefGoogle ScholarPubMed
Li, R.W. & Levi, D.M. (2004). Characterizing the mechanisms of improvement for position discrimination in adult amblyopia. Journal of Vision 4, 476487. doi: 10:1167/4.6.7.CrossRefGoogle ScholarPubMed
Levi, D.M. & Li, R.W. (2009). Perceptual learning as a potential treatment for amblyopia: A mini-review. Vision Research 49, 25352549.CrossRefGoogle ScholarPubMed
Levi, D.M., McKee, S.P. & Movshon, J.A. (2011). Visual deficits in anisometropia. Vision Research 51, 4857.CrossRefGoogle ScholarPubMed
Levi, D.M., Song, S. & Pelli, D.G. (2007 b). Amblyopic reading is crowded. Journal of Vision 7, 21.121.17.CrossRefGoogle ScholarPubMed
Levi, D.M. & Tripathy, S.P. (2006). Is the ability to identify deviations in multiple trajectories compromised by amblyopia? Journal of Vision 6, 13671379.CrossRefGoogle ScholarPubMed
Levi, D.M., Waugh, S.J. & Beard, B.L. (1994 c). Spatial scale shifts in amblyopia. Vision Research 34, 33153333.CrossRefGoogle ScholarPubMed
Levi, D.M., Yu, C., Kuai, S.G. & Rislove, E. (2007 c). Global contour processing in amblyopia. Vision Research 47, 512524.CrossRefGoogle ScholarPubMed
Li, X., Dumoulin, S.O., Mansouri, B. & Hess, R.F. (2007). Cortical deficits in human amblyopia: Their regional distribution and their relationship to the contrast detection deficit. Investigative Ophthalmology and Visual Science 48, 15751591.CrossRefGoogle Scholar
Li, R.W., Klein, S.A. & Levi, D.M. (2008). Prolonged perceptual learning of positional acuity in adult amblyopia: Perceptual template retuning dynamics. Journal of Neuroscience 28, 1422314229.CrossRefGoogle ScholarPubMed
Li, R.W., Ngo, C., Nguyen, J. & Levi, D.M. (2011). Video-game play induces plasticity in the visual system of adults with amblyopia. PLoS Biology 9, e1001135. doi: 10.1371/journal.pbio.1001135.CrossRefGoogle ScholarPubMed
Loshin, D.S. & Levi, D.M. (1983). Suprathreshold contrast perception in functional amblyopia. Documenta Ophthalmologica. Advances in Ophthalmology 55, 213236.CrossRefGoogle ScholarPubMed
Mansouri, B., Allen, H.A. & Hess, R.F. (2005). Detection, discrimination and integration of second-order orientation information in strabismic and anisometropic amblyopia. Vision Research 45, 24492460.CrossRefGoogle ScholarPubMed
Mansouri, B. & Hess, R.F. (2006). The global processing deficit in amblyopia involves noise segregation. Vision Research 46, 41044117.CrossRefGoogle ScholarPubMed
McIlhagga, W. & Paakkonen, A. (1999). Noisy templates explain area summation. Vision Research 39, 367372.CrossRefGoogle ScholarPubMed
McKee, S.P., Levi, D.M. & Movshon, J.A. (2003). The pattern of visual deficits in amblyopia. Journal of Vision 3, 380405.CrossRefGoogle ScholarPubMed
Muckli, L., Kiess, S., Tonhausen, N., Singer, W., Goebel, R. & Sireteanu, R. (2006). Cerebral correlates of impaired grating perception in individual, psychophysically assessed human amblyopes. Vision Research 46, 506526.CrossRefGoogle ScholarPubMed
Mussap, A.J. & Levi, D.M. (2000). Amblyopic deficits in detecting a dotted line in noise. Vision Research 40, 32973307.CrossRefGoogle ScholarPubMed
Neri, P. & Levi, D.M. (2006). Receptive versus perceptive fields from the reverse-correlation viewpoint. Vision Research 46, 24652474.CrossRefGoogle ScholarPubMed
Parker, A.J. & Newsome, W.T. (1998). Sense and the single neuron: Probing the physiology of perception. Annual Review of Neuroscience 21, 227277.CrossRefGoogle ScholarPubMed
Pelli, D.G. (1990). The quantum efficiency of vision. In Visual Coding and Efficiency, ed. Blakemore, C. Cambridge: Cambridge University Press.Google Scholar
Pelli, D.G. & Farell, B. (1999). Why use noise? Journal of the Optical Society of America A 16, 647653.CrossRefGoogle ScholarPubMed
Pelli, D.G., Levi, D.M. & Chung, S.T. (2004). Using visual noise to characterize amblyopic letter identification. Journal of Vision 4, 904920.CrossRefGoogle ScholarPubMed
Peters, A. & Yilmaz, E. (1993). Neuronal organization in area 17 of cat visual cortex. Cerebral Cortex 3, 4968.CrossRefGoogle ScholarPubMed
Popple, A.V. & Levi, D.M. (2000). Amblyopes see true alignment where normal observers see illusory tilt. Proceedings of the National Academy of Sciences of the United States of America 97, 1166711672.CrossRefGoogle ScholarPubMed
Popple, A.V. & Levi, D.M. (2008). The attentional blink in amblyopia. Journal of Vision 8, 12.112.19.CrossRefGoogle ScholarPubMed
Pugh, M. (1958). Visual distortion in Amblyopia. British Journal of Ophthalmology, 42, 449–60.CrossRefGoogle ScholarPubMed
Rentschler, I., Hilz, R. & Brettel, H. (1980). Spatial tuning properties in human amblyopia cannot explain the loss of optotype acuity. Behavioural Brain Research 1, 433443.CrossRefGoogle ScholarPubMed
Repka, M.X. & Holmes, J.M. (2012). Lessons from the amblyopia treatment studies. Ophthalmology 119, 657658.CrossRefGoogle ScholarPubMed
Rislove, E.M., Hall, E.C., Stavros, K.A. & Kiorpes, L. (2010). Scale-dependent loss of global form perception in strabismic amblyopia. Journal of Vision 10, 25.CrossRefGoogle ScholarPubMed
Secen, J., Culham, J., Ho, C. & Giaschi, D. (2011). Neural correlates of the multiple-object tracking deficit in amblyopia. Vision Research 51, 25172527.CrossRefGoogle ScholarPubMed
Shadlen, M., Britten, K., Newsome, W.T. & Movshon, J.A. (1996). A computational analysis of the relationship between neuronal and behavioral responses to visual motion. Journal of Neuroscience 16, 14861510.CrossRefGoogle ScholarPubMed
Sharma, V., Levi, D.M. & Coletta, N.J. (1999). Sparse-sampling of gratings in the visual cortex of strabismic amblyopes. Vision Research 39, 35263536.CrossRefGoogle ScholarPubMed
Sharma, V., Levi, D.M. & Klein, S.A. (2000). Undercounting features and missing features: Evidence for a high-level deficit in strabismic amblyopia. Nature Neuroscience 3, 496501.CrossRefGoogle ScholarPubMed
Simmers, A.J. & Bex, P.J. (2004). The representation of global spatial structure in amblyopia. Vision Research 44, 523533.CrossRefGoogle ScholarPubMed
Simmers, A.J., Ledgeway, T., Hess, R.F. & McGraw, P.V. (2003). Deficits to global motion processing in human amblyopia. Vision Research 43, 729738.CrossRefGoogle ScholarPubMed
Simmers, A.J., Ledgeway, T., Mansouri, B., Hutchinson, C.V. & Hess, R.F. (2006). The extent of the dorsal extra-striate deficit in amblyopia. Vision Research 46, 25712580.CrossRefGoogle ScholarPubMed
Sireteanu, R., Lagreze, W.D. & Constantinescu, D.H. (1993). Distortions in two-dimensional visual space perception in strabismic observers. Vision Research 33, 677690.CrossRefGoogle ScholarPubMed
Stuart, J.A. & Burian, H.M. (1962). A study of separation difficulty. Its relationship to visual acuity in normal and amblyopic eyes. American Journal of Ophthalmology 53, 471477.CrossRefGoogle ScholarPubMed
Teller, D.Y. (1984). Linking propositions. Vision Research 24, 12331246.CrossRefGoogle ScholarPubMed
Tripathy, S.P. & Levi, D.M. (2008). On the effective number of tracked trajectories in amblyopic human vision. Journal of Vision 8, 8.18.22.CrossRefGoogle ScholarPubMed
Wang, J., Ho, C. & Giaschi, D. (2007). Deficient motion-defined and texture-defined figure-ground segregation in amblyopic children. Journal of Pediatric Ophthalmology and Strabismus 44, 363371.Google ScholarPubMed
Wang, H., Levi, D.M. & Klein, S.A. (1998). Spatial uncertainty and sampling efficiency in amblyopic position acuity. Vision Research 38, 12391251.CrossRefGoogle ScholarPubMed
Watt, R.J. & Hess, R.F. (1987). Spatial information and uncertainty in anisometropic amblyopia. Vision Research 27, 661674.CrossRefGoogle ScholarPubMed
Wilson, H. (1991). Model of peripheral and amblyopic hyperacuity. Vision Research, 31, 967982.CrossRefGoogle ScholarPubMed
Wong, E.H. & Levi, D.M. (2005). Second-order spatial summation in amblyopia. Vision Research 45, 27992809.CrossRefGoogle ScholarPubMed
Wong, E.H., Levi, D.M. & McGraw, P.V. (2001). Is second-order spatial loss in amblyopia explained by the loss of first-order spatial input? Vision Research 41, 29512960.CrossRefGoogle ScholarPubMed