Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T06:56:31.502Z Has data issue: false hasContentIssue false

Morphological characterization of fullerene and fullerene-free organic photovoltaics by combined real and reciprocal space techniques

Published online by Cambridge University Press:  02 May 2017

Subhrangsu Mukherjee
Affiliation:
Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
Andrew A. Herzing
Affiliation:
Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
Donglin Zhao
Affiliation:
Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
Qinghe Wu
Affiliation:
Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
Luping Yu
Affiliation:
Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
Harald Ade
Affiliation:
Department of Physics and Organic and Carbon Electronics Laboratory, North Carolina State University, Raleigh, North Carolina 27695, USA
Dean M. DeLongchamp
Affiliation:
Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
Lee J. Richter*
Affiliation:
Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
*
a) Address all correspondence to this author. e-mail: lee.richter@nist.gov
Get access

Abstract

Morphology can play a critical role in determining function in organic photovoltaic (OPV) systems. Recently molecular acceptors have showed promise to replace fullerene derivatives as acceptor materials in bulk heterojunction solar cells and have achieved >10% efficiencies in single junction devices. The nearly identical mass/electron densities between the donor (polymer) and acceptor (molecule) materials results in poor material contrast compared to fullerene-based OPVs and therefore morphology characterization using techniques that rely on mass/electron density variations poses a challenge. This inhibits a fundamental understanding of the structure–property relationships for non-fullerene acceptor materials. We demonstrate that low angle annular dark field scanning transmission electron microscopy and resonant soft X-ray scattering form a set of complementary tools that can provide quantitative characterization of fullerene as well as non-fullerene based organic photovoltaic systems.

Type
Invited Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Contributing Editor: Moritz Riede

References

REFERENCES

Beiley, Z.M., Hoke, E.T., Noriega, R., Dacuña, J., Burkhard, G.F., Bartelt, J.A., Salleo, A., Toney, M.F., and McGehee, M.D.: Morphology-dependent trap formation in high performance polymer bulk heterojunction solar cells. Adv. Energy Mater. 1(5), 954 (2011).CrossRefGoogle Scholar
Burke, T.M. and McGehee, M.D.: How high local charge carrier mobility and an energy cascade in a three-phase bulk heterojunction enable >90% quantum efficiency. Adv. Mater. 26(12), 1923 (2014).CrossRefGoogle Scholar
Bartelt, J.A., Beiley, Z.M., Hoke, E.T., Mateker, W.R., Douglas, J.D., Collins, B.A., Tumbleston, J.R., Graham, K.R., Amassian, A., Ade, H., Fréchet, J.M.J., Toney, M.F., and McGehee, M.D.: The importance of fullerene percolation in the mixed regions of polymer-fullerene bulk heterojunction solar cells. Adv. Energy Mater. 3(3), 364 (2013).CrossRefGoogle Scholar
Albrecht, S., Vandewal, K., Tumbleston, J.R., Fischer, F.S., Douglas, J.D., Frechet, J.M., Ludwigs, S., Ade, H., Salleo, A., and Neher, D.: On the efficiency of charge transfer state splitting in polymer:fullerene solar cells. Adv. Mater. 26(16), 2533 (2014).CrossRefGoogle ScholarPubMed
Tumbleston, J.R., Collins, B.A., Yang, L.Q., Stuart, A.C., Gann, E., Ma, W., You, W., and Ade, H.: The influence of molecular orientation on organic bulk heterojunction solar cells. Nat. Photonics 8(5), 385 (2014).CrossRefGoogle Scholar
Mukherjee, S., Proctor, C.M., Bazan, G.C., Nguyen, T-Q., and Ade, H.: Significance of average domain purity and mixed domains on the photovoltaic performance of high-efficiency solution-processed small-molecule BHJ solar cells. Adv. Energy Mater. 5(21), 1500877 (2015).CrossRefGoogle Scholar
Bartesaghi, D., Perez, I.d.C., Kniepert, J., Roland, S., Turbiez, M., Neher, D., and Koster, L.J.A.: Competition between recombination and extraction of free charges determines the fill factor of organic solar cells. Nat. Commun. 6(8083), 1 (2015).CrossRefGoogle ScholarPubMed
Cheng, P., Yan, C., Li, Y., Ma, W., and Zhan, X.: Diluting concentrated solution: A general, simple and effective approach to enhance efficiency of polymer solar cells. Energy Environ. Sci. 8(8), 2357 (2015).CrossRefGoogle Scholar
Mukherjee, S., Jiao, X., and Ade, H.: Charge creation and recombination in multi-length scale polymer:fullerene BHJ solar cell morphologies. Adv. Energy Mater. 6(18), 1600699 (2016).CrossRefGoogle Scholar
Ye, L., Zhao, W., Li, S., Mukherjee, S., Carpenter, J.H., Awartani, O., Jiao, X., Hou, J., and Ade, H.: High-efficiency nonfullerene organic solar cells: Critical factors that affect complex multi-length scale morphology and device performance. Adv. Energy Mater. 7(7), 1602000 (2017).CrossRefGoogle Scholar
Collins, B.A., Gann, E., Guignard, L., He, X., McNeill, C.R., and Ade, H.: Molecular miscibility of polymer-fullerene blends. J. Phys. Chem. Lett. 1(21), 3160 (2010).CrossRefGoogle Scholar
Treat, N.D. and Chabinyc, M.L.: Phase separation in bulk heterojunctions of semiconducting polymers and fullerenes for photovoltaics. Annu. Rev. Phys. Chem. 65(1), 59 (2014).CrossRefGoogle ScholarPubMed
Ro, H.W., Downing, J.M., Engmann, S., Herzing, A.A., DeLongchamp, D.M., Richter, L.J., Mukherjee, S., Ade, H., Abdelsamie, M., Jagadamma, L.K., Amassian, A., Liu, Y.H., and Yan, H.: Morphology changes upon scaling a high-efficiency, solution-processed solar cell. Energy Environ. Sci. 9(9), 2835 (2016).CrossRefGoogle Scholar
Ye, L., Xiong, Y., Yao, H., Gadisa, A., Zhang, H., Li, S., Ghasemi, M., Balar, N., Hunt, A., and O’Connor, B.T.: High performance organic solar cells processed by blade coating in air from a benign food additive solution. Chem. Mater. 28(20), 7451 (2016).CrossRefGoogle Scholar
Li, S., Ye, L., Zhao, W., Zhang, S., Mukherjee, S., Ade, H., and Hou, J.: Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv. Mater. 28(42), 9423 (2016).CrossRefGoogle ScholarPubMed
Zhao, J., Li, Y., Yang, G., Jiang, K., Lin, H., Ade, H., Ma, W., and Yan, H.: Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 1, 15027 (2016).CrossRefGoogle Scholar
Berny, S., Blouin, N., Distler, A., Egelhaaf, H.J., Krompiec, M., Lohr, A., Lozman, O.R., Morse, G.E., Nanson, L., and Pron, A.: Solar trees: First large-scale demonstration of fully solution coated, semitransparent, flexible organic photovoltaic modules. Adv. Sci. 3(5), 1500342 (2016).CrossRefGoogle ScholarPubMed
Brabec, C.J., Scherf, U., and Dyakonov, V., eds.: Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies, 2nd ed. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2014).CrossRefGoogle Scholar
O’Connor, B., Kline, R.J., Conrad, B.R., Richter, L.J., Gundlach, D., Toney, M.F., and DeLongchamp, D.M.: Anisotropic structure and charge transport in highly strain-aligned regioregular poly(3-hexylthiophene). Adv. Funct. Mater. 21(19), 3697 (2011).CrossRefGoogle Scholar
Hammond, M.R., Kline, R.J., Herzing, A.A., Richter, L.J., Germack, D.S., Ro, H-W., Soles, C.L., Fischer, D.A., Xu, T., Yu, L., Toney, M.F., and DeLongchamp, D.M.: Molecular order in high-efficiency polymer/fullerene bulk heterojunction solar cells. ACS Nano 5(10), 8248 (2011).CrossRefGoogle ScholarPubMed
Campoy-Quiles, M., Alonso, M.I., Bradley, D.D.C., and Richter, L.J.: Advanced ellipsometric characterization of conjugated polymer films. Adv. Funct. Mater. 24(15), 2116 (2014).CrossRefGoogle Scholar
Sweetnam, S., Graham, K.R., Ngongang Ndjawa, G.O., Heumüller, T., Bartelt, J.A., Burke, T.M., Li, W., You, W., Amassian, A., and McGehee, M.D.: Characterization of the polymer energy landscape in polymer:fullerene bulk heterojunctions with pure and mixed phases. J. Am. Chem. Soc. 136(40), 14078 (2014).CrossRefGoogle ScholarPubMed
Giri, G., DeLongchamp, D.M., Reinspach, J., Fischer, D.A., Richter, L.J., Xu, J., Benight, S., Ayzner, A., He, M.Q., Fang, L., Xue, G., Toney, M.F., and Bao, Z.N.: Effect of solution shearing method on packing and disorder of organic semiconductor polymers. Chem. Mater. 27(7), 2350 (2015).CrossRefGoogle Scholar
Herzing, A.A., Richter, L.J., and Anderson, I.M.: 3D nanoscale characterization of thin-film organic photovoltaic device structures via spectroscopic contrast in the TEM 1. J. Phys. Chem. C 114(41), 17501 (2010).CrossRefGoogle Scholar
Hedley, G.J., Ward, A.J., Alekseev, A., Howells, C.T., Martins, E.R., Serrano, L.A., Cooke, G., Ruseckas, A., and Samuel, I.D.W.: Determining the optimum morphology in high-performance polymer-fullerene organic photovoltaic cells. Nat. Commun. 4, 2867 (2013).CrossRefGoogle ScholarPubMed
Pfannmöller, M., Heidari, H., Nanson, L., Lozman, O.R., Chrapa, M., Offermans, T., Nisato, G., and Bals, S.: Quantitative tomography of organic photovoltaic blends at the nanoscale. Nano Lett. 15(10), 6634 (2015).CrossRefGoogle ScholarPubMed
Ade, H. and Hitchcock, A.P.: NEXAFS microscopy and resonant scattering: Composition and orientation probed in real and reciprocal space. Polymer 49(3), 643 (2008).CrossRefGoogle Scholar
McNeill, C.R. and Ade, H.: Soft X-ray characterisation of organic semiconductor films. J. Phys. Chem. C 1(2), 187 (2013).Google Scholar
Collins, B.A., Bokel, F.A., and DeLongchamp, D.M.: Organic photovoltaic morphology. In Organic Photovoltaics (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2014); p. 377.CrossRefGoogle Scholar
Buchaca-Domingo, E., Ferguson, A.J., Jamieson, F.C., McCarthy-Ward, T., Shoaee, S., Tumbleston, J.R., Reid, O.G., Yu, L., Madec, M.B., Pfannmöller, M., Hermerschmidt, F., Schröder, R.R., Watkins, S.E., Kopidakis, N., Portale, G., Amassian, A., Heeney, M., Ade, H., Rumbles, G., Durrant, J.R., and Stingelin, N.: Additive-assisted supramolecular manipulation of polymer:fullerene blend phase morphologies and its influence on photophysical processes. Mater. Horiz. 1(2), 270 (2014).CrossRefGoogle Scholar
Yin, W. and Dadmun, M.: A new model for the morphology of P3HT/PCBM organic photovoltaics from small-angle neutron scattering: Rivers and streams. ACS Nano 5(6), 4756 (2011).CrossRefGoogle ScholarPubMed
Etampawala, T., Ratnaweera, D., Morgan, B., Diallo, S., Mamontov, E., and Dadmun, M.: Monitoring the dynamics of miscible P3HT:PCBM blends: A quasi elastic neutron scattering study of organic photovoltaic active layers. Polymer 61, 155 (2015).CrossRefGoogle Scholar
Chen, H., Peet, J., Hu, S., Azoulay, J., Bazan, G., and Dadmun, M.: The role of fullerene mixing behavior in the performance of organic photovoltaics: PCBM in low-bandgap polymers. Adv. Funct. Mater. 24(1), 140 (2014).CrossRefGoogle Scholar
Ruderer, M.A., Meier, R., Porcar, L., Cubitt, R., and Müller-Buschbaum, P.: Phase separation and molecular intermixing in polymer–fullerene bulk heterojunction thin films. J. Phys. Chem. Lett. 3(6), 683 (2012).CrossRefGoogle ScholarPubMed
Guo, S., Cao, B., Wang, W., Moulin, J-F., and Müller-Buschbaum, P.: Effect of alcohol treatment on the performance of PTB7:PC71BM bulk heterojunction solar cells. ACS Appl. Mater. Interfaces 7(8), 4641 (2015).CrossRefGoogle Scholar
Müller-Buschbaum, P.: The active layer morphology of organic solar cells probed with grazing incidence scattering techniques. Adv. Mater. 26(46), 7692 (2014).CrossRefGoogle ScholarPubMed
Engmann, S., Bokel, F.A., Herzing, A.A., Ro, H.W., Girotto, C., Caputo, B., Hoven, C.V., Schaible, E., Hexemer, A., DeLongchamp, D.M., and Richter, L.J.: Real-time X-ray scattering studies of film evolution in high performing small-molecule-fullerene organic solar cells. J. Mater. Chem. A 3(16), 8764 (2015).CrossRefGoogle Scholar
DeLongchamp, D.M., Kline, R.J., and Herzing, A.: Nanoscale structure measurements for polymer-fullerene photovoltaics. Energy Environ. Sci. 5(3), 5980 (2012).CrossRefGoogle Scholar
Richter, L.J., DeLongchamp, D.M., Bokel, F.A., Engmann, S., Chou, K.W., Amassian, A., Schaible, E., and Hexemer, A.: In situ morphology studies of the mechanism for solution additive effects on the formation of bulk heterojunction films. Adv. Energy Mater. 5(3), 1400975 (2015).CrossRefGoogle Scholar
Hexemer, A. and Müller-Buschbaum, P.: Advanced grazing-incidence techniques for modern soft-matter materials analysis. IUCrJ 2(1), 106 (2015).CrossRefGoogle ScholarPubMed
Liu, Y., Zhao, J., Li, Z., Mu, C., Ma, W., Hu, H., Jiang, K., Lin, H., Ade, H., and Yan, H.: Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 5, 5293 (2014).CrossRefGoogle ScholarPubMed
He, Z., Xiao, B., Liu, F., Wu, H., Yang, Y., Xiao, S., Wang, C., Russell, T.P., and Cao, Y.: Single-junction polymer solar cells with high efficiency and photovoltage. Nat. Photonics 9(3), 174 (2015).CrossRefGoogle Scholar
Wan, Q., Guo, X., Wang, Z., Li, W., Guo, B., Ma, W., Zhang, M., and Li, Y.: 10.8% efficiency polymer solar cells based on PTB7-Th and PC71BM via binary solvent additives treatment. Adv. Funct. Mater. 26(36), 6635 (2016).CrossRefGoogle Scholar
Zhang, S., Ye, L., and Hou, J.: Breaking the 10% efficiency barrier in organic photovoltaics: Morphology and device optimization of well-known PBDTTT polymers. Adv. Energy Mater. 6(11), 1502529 (2016).CrossRefGoogle Scholar
Ro, H.W., Akgun, B., O’Connor, B.T., Hammond, M., Kline, R.J., Snyder, C.R., Satija, S.K., Ayzner, A.L., Toney, M.F., Soles, C.L., and DeLongchamp, D.M.: Poly(3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester mixing in organic solar cells. Macromolecules 45(16), 6587 (2012).CrossRefGoogle Scholar
Li, W., Yang, L., Tumbleston, J.R., Yan, L., Ade, H., and You, W.: Controlling molecular weight of a high efficiency donor-acceptor conjugated polymer and understanding its significant impact on photovoltaic properties. Adv. Mater. 26(26), 4456 (2014).CrossRefGoogle ScholarPubMed
Zhou, Y., Kurosawa, T., Ma, W., Guo, Y., Fang, L., Vandewal, K., Diao, Y., Wang, C., Yan, Q., Reinspach, J., Mei, J., Appleton, A.L., Koleilat, G.I., Gao, Y., Mannsfeld, S.C., Salleo, A., Ade, H., Zhao, D., and Bao, Z.: High performance all-polymer solar cell via polymer side-chain engineering. Adv. Mater. 26(22), 3767 (2014).CrossRefGoogle ScholarPubMed
Tumbleston, J.R., Stuart, A.C., Gann, E., You, W., and Ade, H.: Fluorinated polymer yields high organic solar cell performance for a wide range of morphologies. Adv. Funct. Mater. 23(27), 3463 (2013).CrossRefGoogle Scholar
Yao, H.F., Ye, L., Zhang, H., Li, S.S., Zhang, S.Q., and Hou, J.H.: Molecular design of benzodithiophene-based organic photovoltaic materials. Chem. Rev. 116(12), 7397 (2016).CrossRefGoogle ScholarPubMed
Stuart, A.C., Tumbleston, J.R., Zhou, H., Li, W., Liu, S., Ade, H., and You, W.: Fluorine substituents reduce charge recombination and drive structure and morphology development in polymer solar cells. J. Am. Chem. Soc. 135(5), 1806 (2013).CrossRefGoogle ScholarPubMed
Xu, T. and Yu, L.: How to design low bandgap polymers for highly efficient organic solar cells. Mater. Today 17(1), 11 (2014).CrossRefGoogle Scholar
Kim, T., Kim, J-H., Kang, T.E., Lee, C., Kang, H., Shin, M., Wang, C., Ma, B., Jeong, U., Kim, T-S., and Kim, B.J.: Flexible, highly efficient all-polymer solar cells. Nat. Commun. 6, 8547 (2015).CrossRefGoogle ScholarPubMed
Ding, Z., Long, X., Meng, B., Bai, K., Dou, C., Liu, J., and Wang, L.: Polymer solar cells with open-circuit voltage of 1.3 V using polymer electron acceptor with high LUMO level. Nano Energy 32, 216 (2017).CrossRefGoogle Scholar
Facchetti, A.: Polymer donor–polymer acceptor (all-polymer) solar cells. Mater. Today 16(4), 123 (2013).CrossRefGoogle Scholar
Jo, J.W., Jung, J.W., Ahn, H., Ko, M.J., Jen, A.K.Y., and Son, H.J.: Effect of molecular orientation of donor polymers on charge generation and photovoltaic properties in bulk heterojunction all-polymer solar cells. Adv. Energy Mater. 7(1), 1601365 (2017).CrossRefGoogle Scholar
Shi, S., Yuan, J., Ding, G., Ford, M., Lu, K., Shi, G., Sun, J., Ling, X., Li, Y., and Ma, W.: Improved all-polymer solar cell performance by using matched polymer acceptor. Adv. Funct. Mater. 26(31), 5669 (2016).CrossRefGoogle Scholar
Ye, L., Jiao, X., Zhang, S., Yao, H., Qin, Y., Ade, H., and Hou, J.: Control of mesoscale morphology and photovoltaic performance in diketopyrrolopyrrole-based small band gap terpolymers. Adv. Energy Mater. 7, 1601138 (2016).CrossRefGoogle Scholar
Qiu, N., Yang, X., Zhang, H., Wan, X., Li, C., Liu, F., Zhang, H., Russell, T.P., and Chen, Y.: Nonfullerene small molecular acceptors with a three-dimensional (3D) structure for organic solar cells. Chem. Mater. 28(18), 6770 (2016).CrossRefGoogle Scholar
Eftaiha, A.a.F., Sun, J-P., Hill, I.G., and Welch, G.C.: Recent advances of non-fullerene, small molecular acceptors for solution processed bulk heterojunction solar cells. J. Mater. Chem. A 2(5), 1201 (2014).CrossRefGoogle Scholar
Hadmojo, W.T., Nam, S.Y., Shin, T.J., Yoon, S.C., Jang, S-Y., and Jung, I.H.: Geometrically controlled organic small molecule acceptors for efficient fullerene-free organic photovoltaic devices. J. Mater. Chem. A 4(31), 12308 (2016).CrossRefGoogle Scholar
Wu, Q., Zhao, D., Schneider, A.M., Chen, W., and Yu, L.: Covalently bound clusters of alpha-substituted PDI—rival electron acceptors to fullerene for organic solar cells. J. Am. Chem. Soc. 138(23), 7248 (2016).CrossRefGoogle ScholarPubMed
Liu, Z., Wu, Y., Zhang, Q., and Gao, X.: Non-fullerene small molecule acceptors based on perylene diimides. J. Mater. Chem. A 4(45), 17604 (2016).CrossRefGoogle Scholar
Li, M., Liu, Y., Ni, W., Liu, F., Feng, H., Zhang, Y., Liu, T., Zhang, H., Wan, X., Kan, B., Zhang, Q., Russell, T.P., and Chen, Y.: A simple small molecule as an acceptor for fullerene-free organic solar cells with efficiency near 8%. J. Mater. Chem. A 4(27), 10409 (2016).CrossRefGoogle Scholar
Zhao, D., Wu, Q., Cai, Z., Zheng, T., Chen, W., Lu, J., and Yu, L.: Electron acceptors based on α-substituted perylene diimide (PDI) for organic solar cells. Chem. Mater. 28(4), 1139 (2016).CrossRefGoogle Scholar
Meier, R., Ruderer, M.A., Diethert, A., Kaune, G., Körstgens, V., Roth, S.V., and Müller-Buschbaum, P.: Influence of film thickness on the phase separation mechanism in ultrathin conducting polymer blend films. J. Phys. Chem. B 115(12), 2899 (2011).CrossRefGoogle ScholarPubMed
Ruderer, M.A., Prams, S.M., Rawolle, M., Zhong, Q., Perlich, J., Roth, S.V., and Müller-Buschbaum, P.: Influence of annealing and blending of photoactive polymers on their crystalline structure. J. Phys. Chem. B 114(47), 15451 (2010).CrossRefGoogle ScholarPubMed
Pennycook, S.J. and Nellist, P.D.: Scanning Transmission Electron Microscopy: Imaging and Analysis (Springer, New York, 2011).CrossRefGoogle Scholar
Grubb, D.T. and Groves, G.W.: Rate of damage of polymer crystals in the electron microscope: Dependence on temperature and beam voltage. Philos. Mag. 24(190), 815 (1971).CrossRefGoogle Scholar
Araki, T., Ade, H., Stubbs, J.M., Sundberg, D.C., Mitchell, G.E., Kortright, J.B., and Kilcoyne, A.L.D.: Resonant soft X-ray scattering from structured polymer nanoparticles. Appl. Phys. Lett. 89(12), 124106 (2006).CrossRefGoogle Scholar
Carpenter, J.H., Hunt, A., and Ade, H.: Characterizing morphology in organic systems with resonant soft X-ray scattering. J. Electron Spectrosc. Relat. Phenom. 200, 2 (2015).CrossRefGoogle Scholar
Collins, B.A., Cochran, J.E., Yan, H., Gann, E., Hub, C., Fink, R., Wang, C., Schuettfort, T., McNeill, C.R., Chabinyc, M.L., and Ade, H.: Polarized X-ray scattering reveals non-crystalline orientational ordering in organic films. Nat. Mater. 11(6), 536 (2012).CrossRefGoogle ScholarPubMed
Swaraj, S., Wang, C., Yan, H., Watts, B., Luning, J., McNeill, C.R., and Ade, H.: Nanomorphology of bulk heterojunction photovoltaic thin films probed with resonant soft X-ray scattering. Nano Lett. 10(8), 2863 (2010).CrossRefGoogle ScholarPubMed
Ye, L., Jiao, X., Zhou, M., Zhang, S., Yao, H., Zhao, W., Xia, A., Ade, H., and Hou, J.: Manipulating aggregation and molecular orientation in all-polymer photovoltaic cells. Adv. Mater. 27(39), 6046 (2015).CrossRefGoogle ScholarPubMed
Ye, L., Jiao, X., Zhang, H., Li, S., Yao, H., Ade, H., and Hou, J.: 2D-Conjugated benzodithiophene-based polymer acceptor: Design, synthesis, nanomorphology, and photovoltaic performance. Macromolecules 48(19), 7156 (2015).CrossRefGoogle Scholar
Ye, L., Jiao, X., Zhao, W., Zhang, S., Yao, H., Li, S., Ade, H., and Hou, J.: Manipulation of domain purity and orientational ordering in high performance all-polymer solar cells. Chem. Mater. 28(17), 6178 (2016).CrossRefGoogle Scholar
Deshmukh, K.D., Prasad, S.K.K., Chandrasekaran, N., Liu, A.C.Y., Gann, E., Thomsen, L., Kabra, D., Hodgkiss, J.M., and McNeill, C.R.: Critical role of pendant group substitution on the performance of efficient all-polymer solar cells. Chem. Mater. 29(2), 804 (2017).CrossRefGoogle Scholar
Stribeck, N.: Scattering of soft condensed matter: From fundaments to application. Lect. Notes Phys. 776, 23 (2009).CrossRefGoogle Scholar
Gann, E., Collins, B.A., Tang, M., Tumbleston, J.R., Mukherjee, S., and Ade, H.: Origins of polarization-dependent anisotropic X-ray scattering from organic thin films. J. Synchrotron Radiat. 23(1), 019074 (2016).CrossRefGoogle ScholarPubMed
Ma, W., Tumbleston, J.R., Wang, M., Gann, E., Huang, F., and Ade, H.: Domain purity, miscibility, and molecular orientation at donor/acceptor interfaces in high performance organic solar cells: Paths to further improvement. Adv. Energy Mater. 3(7), 864 (2013).CrossRefGoogle Scholar
Coffey, T., Urquhart, S.G., and Ade, H.: Characterization of the effects of soft X-ray irradiation on polymers. J. Electron Spectrosc. Relat. Phenom. 122(1), 65 (2002).CrossRefGoogle Scholar
Sunday, D.F., Hammond, M.R., Wang, C., Wu, W-l., Kline, R.J., and Stein, G.E.: Three-dimensional x-ray metrology for block copolymer lithography line-space patterns. J. Micro/Nanolithogr., MEMS, MOEMS 12(3), 031103 (2013).CrossRefGoogle Scholar
Schaffer, C.J., Wang, C., Hexemer, A., and Müller-Buschbaum, P.: Grazing incidence resonant soft X-ray scattering for analysis of multi-component polymer-fullerene blend thin films. Polymer 105, 357 (2016).CrossRefGoogle Scholar
Ruderer, M.A., Wang, C., Schaible, E., Hexemer, A., Xu, T., and Muller-Buschbaum, P.: Morphology and optical properties of P3HT:MEH-CN-PPV blend films. Macromolecules 46(11), 4491 (2013).CrossRefGoogle Scholar
Gann, E., Young, A.T., Collins, B.A., Yan, H., Nasiatka, J., Padmore, H.A., Ade, H., Hexemer, A., and Wang, C.: Soft X-ray scattering facility at the advanced light source with real-time data processing and analysis. Rev. Sci. Instrum. 83(4), 045110 (2012).CrossRefGoogle ScholarPubMed
Ilavsky, J.: Nika: Software for two-dimensional data reduction. J. Appl. Crystallogr. 45(2), 324 (2012).CrossRefGoogle Scholar
Hexemer, A., Bras, W., Glossinger, J., Schaible, E., Gann, E., Kirian, R., MacDowell, A., Church, M., Rude, B., and Padmore, H.: A SAXS/WAXS/GISAXS beamline with multilayer monochromator. J. Phys.: Conf. Ser. 247(1), 012007 (2010).Google Scholar
Kilcoyne, A.L.D., Tyliszczak, T., Steele, W.F., Fakra, S., Hitchcock, P., Franck, K., Anderson, E., Harteneck, B., Rightor, E.G., Mitchell, G.E., Hitchcock, A.P., Yang, L., Warwick, T., and Ade, H.: Interferometer-controlled scanning transmission X-ray microscopes at the advanced light source. J. Synchrotron Radiat. 10(2), 125 (2003).CrossRefGoogle ScholarPubMed
Collins, B.A. and Ade, H.: Quantitative compositional analysis of organic thin films using transmission NEXAFS spectroscopy in an X-ray microscope. J. Electron Spectrosc. Relat. Phenom. 185(5–7), 119 (2012).CrossRefGoogle Scholar
van Franeker, J.J., Westhoff, D., Turbiez, M., Wienk, M.M., Schmidt, V., and Janssen, R.A.J.: Controlling the dominant length scale of liquid–liquid phase separation in spin-coated organic semiconductor films. Adv. Funct. Mater. 25(6), 855 (2015).CrossRefGoogle Scholar
van Franeker, J.J., Turbiez, M., Li, W., Wienk, M.M., and Janssen, R.A.J.: A real-time study of the benefits of co-solvents in polymer solar cell processing. Nat. Commun. 6, 6229 (2015).CrossRefGoogle ScholarPubMed
Collins, B.A., Li, Z., Tumbleston, J.R., Gann, E., McNeill, C.R., and Ade, H.: Absolute measurement of domain composition and nanoscale size distribution explains performance in PTB7:PC71BM solar cells. Adv. Energy Mater. 3(1), 65 (2013).CrossRefGoogle Scholar
Love, J.A., Collins, S.D., Nagao, I., Mukherjee, S., Ade, H., Bazan, G.C., and Nguyen, T-Q.: Interplay of solvent additive concentration and active layer thickness on the performance of small molecule solar cells. Adv. Mater. 26(43), 7308 (2014).CrossRefGoogle ScholarPubMed
Ma, W., Tumbleston, J.R., Ye, L., Wang, C., Hou, J., and Ade, H.: Quantification of nano- and mesoscale phase separation and relation to donor and acceptor quantum efficiency, J(sc), and FF in polymer:fullerene solar cells. Adv. Mater. 26(25), 4234 (2014).CrossRefGoogle ScholarPubMed
Liu, F., Zhao, W., Tumbleston, J.R., Wang, C., Gu, Y., Wang, D., Briseno, A.L., Ade, H., and Russell, T.P.: Understanding the morphology of PTB7:PCBM blends in organic photovoltaics. Adv. Energy Mater. 4(5), 1301377 (2014).CrossRefGoogle Scholar
Leman, D., Kelly, M.A., Ness, S., Engmann, S., Herzing, A., Snyder, C., Ro, H.W., Kline, R.J., DeLongchamp, D.M., and Richter, L.J.: In situ characterization of polymer–fullerene bilayer stability. Macromolecules 48(2), 383 (2015).CrossRefGoogle Scholar
Supplementary material: File

Mukherjee supplementary material

Mukherjee supplementary material 1

Download Mukherjee supplementary material(File)
File 209.5 KB