Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T16:05:02.647Z Has data issue: false hasContentIssue false

Growth of spike in relativistic Gaussian laser beam in a plasma and its effect on third-harmonic generation

Published online by Cambridge University Press:  25 January 2017

N. Ahmad*
Affiliation:
Department of Physics, College of Science, UAE University, PO Box 15551 Al-Ain, United Arab Emirates
S. T. Mahmoud
Affiliation:
Department of Physics, College of Science, UAE University, PO Box 15551 Al-Ain, United Arab Emirates
G. Purohit
Affiliation:
Department of Physics, Laser-Plasma Computational Laboratory, DAV (PG) College, Dehradun, Uttarakhand, India
*
Address correspondence and reprint requests to: N. Ahmad, Department of Physics, College of Science, UAE University, PO Box 15551 Al-Ain, UAE. E-mail: nafis.jmi@gmail.com

Abstract

A paraxial ray formalism is developed to study the evolution of an on axis intensity spike on a Gaussian laser beam in a plasma dominated by relativistic and ponderomotive non-linearities. Ion motion is taken to be frozen. A single beam width parameter characterizes the evolution of the spike. The spike introduces two competing influences: diffraction divergence and self-convergence. The former grows with the reduction in spot size of the spike, while the latter depends on the gradient in non-linear permittivity. Parameter δ = (ωpr00/c) a00/(3.5 r00/r01) characterizes the relative importance of the two, where r01 and r00 are the spike and main beam radii, ωp is the plasma frequency, and a00 is the normalized laser amplitude. For δ > 1, the intensity ripple causes faster self-focusing of the beam; higher the ripple amplitude stronger the focusing. In the opposite limit, diffraction divergence increases more rapidly, slowing down the self-focusing of the beam. As the beam intensity rises due to self-focusing, it causes stronger generation of the third harmonic.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbi, S.C. & Mahr, H. (1971). Correlation of filaments in nitrobenzene with laser spikes. Phys. Rev. Lett. 26, 604.CrossRefGoogle Scholar
Akhmanov, S.A., Sukhorukov, A.P. & Khokhlov, R.V. (1968). Self focusing and diffraction of light in a nonlinear medium. Sov. Phys. – Usp. 10, 609636.CrossRefGoogle Scholar
Arefiev, A.V., Khudik, V.N. & Schollmeier, M. (2014). Enhancement of laser-driven electron acceleration in an ion channel. Phys. Plasmas 21, 033104.CrossRefGoogle Scholar
Asthana, M.V., Giulietti, A., Varshney, D. & Sodha, M.S. (1999). Relativistic self-focusing of a rippled laser beam in a plasma. J. Plasma Phys. 62, 389396.CrossRefGoogle Scholar
Borghesi, M., Mackinnon, A.J., Gaillard, R., Willi, O., Pukhov, A. & Mayer-ter-Vehn, J. (1998). Large quasistatic magnetic fields generated by a relativistically intense laser pulse propagating in a preionized plasma. Phys. Rev. Lett. 80, 5137.CrossRefGoogle Scholar
Chiligarian, Y.S. (1968). Self-focusing of inhomogeneous laser beams and its effect on stimulated scattering. Zh. Eksp. Teor. Fiz. 55, 1589.Google Scholar
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1996). Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24, 252.CrossRefGoogle Scholar
Fuchs, J., Antici, P., d'Humieres, E., Lefebvre, E., Borghesi, M., Brambrink, E., Cecchetti, C.C., Kaluza, M., Malka, V., Manclossi, M., Meyroneinc, S., Mora, P., Schreiber, J., Toncian, T., Pepin, H. & Audebert, P. (2006). Laser-driven proton scaling laws and new paths towards energy increase. Nat. Phys. 2, 4854.CrossRefGoogle Scholar
Ganeev, R.A., Bom, L.B.E., Abdul-Hadi, J., Wong, M.C.H., Brichta, J.P., Bhardwaj, V.R. & Ozaki, T. (2009). Higher-order harmonic generation from fullerene by means of the plasma harmonic method. Phys. Rev. Lett. 102, 013903.CrossRefGoogle ScholarPubMed
Gill, T.S., Mahajan, R. & Kaur, R. (2010). Relativistic and ponderomotive effects on evolution of dark hollow Gaussian beams in a plasma. Laser Part. Beams 28, 521529.CrossRefGoogle Scholar
Gitomer, S.J., Jones, R.D., Begay, F., Ehler, A.W., Kephart, J.F. & Kristal, R. (1986). Fast ions and hot electrons in the laser–plasma interaction. Phys. Fluids 29, 26792688.CrossRefGoogle Scholar
Hafizi, B., Ting, A., Sprangle, P. & Hubbard, R.F. (2000). Relativistic focusing and ponderomotive channeling of intense laser beams. Phys. Rev. E 62, 4120.CrossRefGoogle ScholarPubMed
Kaur, S., Yadav, S. & Sharma, A.K. (2010). Effect of self-focusing on resonant third harmonic generation of laser in a rippled density plasma. Phys. Plasmas 17, 053101.CrossRefGoogle Scholar
Kaw, P., Schmidt, G. & Wilcox, T. (1973). Filamentation and trapping of electromagnetic radiation in plasmas. Phys. Fluids 16, 1522.CrossRefGoogle Scholar
Leemans, W.P., Clayton, C.E., Mori, W.B., Marsh, K.A., Kaw, P.K., Dyson, A., Joshi, C. & Wallace, J.M. (1992). Experiments and simulations of tunnel-ionized plasmas. Phys. Rev. A 46, 1091.CrossRefGoogle ScholarPubMed
Liu, C.S. & Tripathi, V.K. (2001). Self-focusing and frequency broadening of an intense short-pulse laser in plasmas. J. Opt. Soc. Am. A 7, 1714.CrossRefGoogle Scholar
Liu, C.S. & Tripathi, V.K. (1995). Interaction of electromagnetic waves with electron beams and plasmas . Singapore: World Scientific.Google Scholar
Liu, C.S. & Tripathi, V.K. (2008). Third harmonic generation of a short pulse laser in a plasma density ripple created by a machining beam. Phys. Plasmas 15, 023106.CrossRefGoogle Scholar
Loy, M.M.T. & Shen, Y.R. (1969). Small-scale filaments in liquids and tracks of moving foci. Phys. Rev. Lett. 22, 994.CrossRefGoogle Scholar
Lushnikov, P.M. & Rose, H.A. (2006). How much laser power can propagate through fusion plasma? Plasma Phys. Control. Fusion 48, 1501.CrossRefGoogle Scholar
Misra, S. & Mishra, S.K. (2009). Focusing of dark hollow Gaussian electromagnetic beams in a plasma with relativistic-ponderomotive regime. Progr. Electromagn. Res. B 16, 291309.CrossRefGoogle Scholar
Pandey, H.D., Tripathi, V.K. & Sodha, M.S. (1990). Growth of a spike on a laser beam in a plasma. Phys. Fluids B 2, 1221.CrossRefGoogle Scholar
Patil, S.D., Takale, M.V., Navare, S.T., Fulari, V.J. & Dongare, M.B. (2012). Relativistic self-focusing of cosh-Gaussian laser beams in a plasma. Opt. Laser Technol. 44, 314317.CrossRefGoogle Scholar
Picciotto, A., Margarone, D., Velyhan, A., Bellutti, P., Krasa, J., Szydlowsky, A., Bertuccio, G., Shi, Y., Mangione, A., Prokupek, J., Malinowska, A., Krousky, E., Ullschmied, J., Laska, L., Kucharik, M. & Korn, G. (2014). Boron-proton nuclear-fusion enhancement induced in Boron-Doped silicon targets by low-contrast pulsed laser. Phys. Rev. X 4, 031030.Google Scholar
Pukhov, A. & Meyer-ter-Vehn, J. (1996). Relativistic magnetic self-channeling of light in near-critical plasma: Three dimensional particle-in-cell simulation. Phys. Rev. Lett. 76, 3975.CrossRefGoogle ScholarPubMed
Purohit, G., Rawat, P., Chauhan, P. & Mahmoud, S.T. (2015). Higher-order paraxial theory of the propagation of ring rippled laser beam in plasma: Relativistic ponderomotive regime. Phys. Plasmas 22, 052116.CrossRefGoogle Scholar
Sharma, A., Verma, M.P., Prakash, G. & Sodha, M.S. (2004). Three regimes of growth of a Gaussian ripple on a uniform plane electromagnetic wave front in a plasma. J. Appl. Phys. 95, 2963.CrossRefGoogle Scholar
Singh, A., Aggarwal, M. & Gill, T.S. (2009). Dynamics of Gaussian spikes on Gaussian laser beam in relativistic plasma. Laser Part. Beams 27, 587593.CrossRefGoogle Scholar
Singhal, H., Arora, V., Rao, B.S., Naik, P.A., Chakravarty, U., Khan, R.A. & Gupta, P.D. (2009). Dependence of high-order harmonic intensity on the length of preformed plasma plumes. Phys. Rev. A 79, 023807.CrossRefGoogle Scholar
Sodha, M.S. & Faisal, M. (2008). Propagation of high power electromagnetic beams in overdense plasmas: Higher order paraxial theory. Phys. Plasmas 15, 033102.CrossRefGoogle Scholar
Sodha, M.S., Faisal, M. & Verma, M.P. (2009). Effect of self-focusing on third harmonic generation by a Gaussian beam in a collisional plasma. Phys. Plasmas 16, 082304.CrossRefGoogle Scholar
Sodha, M.S., Mishra, S.K. & Misra, S. (2009 b). Focusing of dark hollow Gaussian electromagnetic beams in a plasma. Laser Part. Beams 27, 5768.CrossRefGoogle Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1974). Self Focusing of Laser Beams in Dielectrics, Semiconductors and Plasmas. Delhi: Tata-McGraw-Hill.Google Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Self focusing of laser beams in plasmas and semiconductors. Progr. Opt. 13, 169.CrossRefGoogle Scholar
Sodha, M.S., Konar, S. & Maheshwari, K.P. (1992). Steady-state self-focusing of rippled laser beams in plasmas: Arbitrary nonlinearity. J. Plasma Phys. 48, 107118.CrossRefGoogle Scholar
Sodha, M.S., Sharma, A. & Agarwal, S.K. (2006). Focusing of electromagnetic beams in collisional plasmas, with finite thermal conduction. Phys. Plasmas 13, 083105.CrossRefGoogle Scholar
Sodha, M.S., Sharma, A., Prakash, G. & Verma, M.P. (2004). Growth of a ring ripple on a Gaussian beam in a plasma. Phys. Plasmas 11, 3023.CrossRefGoogle Scholar
Sodha, M.S., Singh, T., Singh, D.P. & Sharma, R.P. (1981). Growth of laser ripple in a plasma and its effect on plasma wave excitation. Phys. Fluids 24, 914.CrossRefGoogle Scholar
Sprangle, P. & Esarey, E. (1991). Stimulated backscattered harmonic generation from intense laser interactions with beams and plasmas. Phys. Rev. Lett. 67, 2021.CrossRefGoogle ScholarPubMed
Sun, G.Z., Ott, E., Lee, Y.C. & Guzdar, P. (1987). Self-focusing of short intense pulses in plasmas. Phys. Fluids 30, 526.CrossRefGoogle Scholar
Wang, X., Zgadzaj, R., Fazel, N., Li, Z., Yi, S.A., Zhang, X., Henderson, W., Chang, Y.Y., Korzekwa, R., Tsai, H.-E., Pai, C.-H., Quevedo, H., Dyer, G., Gaul, E., Martinez, M., Bernstein, A.C., Borger, T., Spinks, M., Donovan, M., Khudik, V., Shvets, G., Ditmire, T. & Downer, M.C. (2013). Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV. Nat. Commun. 4, 1988.CrossRefGoogle Scholar
Zhou, J., Peatross, J., Murnane, M.M., Kapteyn, H.C. & Christov, I.P. (1996). Enhanced high harmonic generation using 25 fs laser pulses. Phys. Rev. Lett. 76, 752755.CrossRefGoogle ScholarPubMed