Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-25T06:09:54.861Z Has data issue: false hasContentIssue false

Effect of Al Concentration on Growth of Antiphase Domains in Ti3Al

Published online by Cambridge University Press:  15 March 2011

Y. Koizumi
Affiliation:
Department of Adaptive Machine Systems, Osaka University, 2-1 Yamada-oka, Suita Osaka 565-0871, Japan
H. Katsumura
Affiliation:
Department of Adaptive Machine Systems, Osaka University, 2-1 Yamada-oka, Suita Osaka 565-0871, Japan
Y. Minamino
Affiliation:
Department of Adaptive Machine Systems, Osaka University, 2-1 Yamada-oka, Suita Osaka 565-0871, Japan
N. Tsuji
Affiliation:
Department of Adaptive Machine Systems, Osaka University, 2-1 Yamada-oka, Suita Osaka 565-0871, Japan
Get access

Abstract

Effects of Al-concentration on growth of antiphase domains (APDs) in Ti3Al crystals have been investigated using crystals with stoichiometric (Ti-25at.%Al) and Al-rich (Ti-33at.%Al) compositions in the temperature range from 973K to 1173K. The growth rate of APDs in the Al-rich crystal is several times higher than that in the stoichiometric crystals at all the temperatures investigated. While the time dependence of APD size obeys the parabolic-growth-law in the stoichiometric crystal, negative deviations from the law takes place at the late stage of the APD growth in the Al-rich crystal owing to the pinning effect of low-energy APB boundaries. APD boundaries lying on prism planes are formed in the Al-rich crystal annealed at 973K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lang, H., Uzawa, H., Mohri, T., Pfeiler, W., Intermetallics 9, 924 (2001).Google Scholar
2. Meacham, B. E., Dennis, K. W., McCallum, R. W., Shieldm, J. E., Mat. Res. Soc. Symp. Proc. 577, 327332 (1999).Google Scholar
3. Morris, D. G. and Morris, M. A., Philo. Mag. 61, 461491 (1990).Google Scholar
4. Koizumi, Y., Nakano, T., Yanagisawa, E., Umakoshi, Y. and Minamino, Y., Philo. Mag. A submitted.Google Scholar
5. Sastry, S. M. L. and Lipsitt, H. A., Metall. Trans. A 8A, 15431552 (1977).Google Scholar
6. Koizumi, Y., Minamino, Y., Nakano, T. and Umakoshi, Y., Proceedings of Defect and Diffusion Forum (DIMAT 2000) 194–199, edited by Limoge, Y. and Bocquet, J. L., (Scitec Publications, Switzerland, 2001) pp. 577582.Google Scholar
7. Nakano, T., Ogawa, B., Koizumi, Y., Umakoshi, Y., Acta mater. 46, 43114324 (1998).Google Scholar
8. Humphreys, H. J., Hatherly, M, Recrystallization and Related Annealing Phenomena (Pargamon, 1995).Google Scholar
9. Rase, C. L., Mikkola, D. E., Metall. Trans. A 6A, 19752267 (1974)Google Scholar
10. Yoo, M. H., Horton, J. A. and Liu, C. T., Acta Metall. 36, 29352946 (1988).Google Scholar
11. Leroux, C., Loiseau, A., Cadeville, M. C., Broddin, D. and Tendeloo, G. Van, J. Phys. Condens. Matter 2, 34793495 (1990).Google Scholar
12. Sakai, M., Mikkola, D. E., Metall. Trans. 2, 16351641 (1971).Google Scholar
13. Horton, J. A., Liu, C. T., Acta Metall. 33, 21912198 (1985).Google Scholar