Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-18T07:28:52.026Z Has data issue: false hasContentIssue false

Engineering ZnO/GaN Interfaces for Tunneling Ohmic Contacts to GaN

Published online by Cambridge University Press:  11 February 2011

E. Kaminska
Affiliation:
Institute of Electron Technology, Warsaw, Poland, Institute of Physics
A. Piotrowska
Affiliation:
Institute of Electron Technology, Warsaw, Poland, Institute of Physics
K. Golaszewska
Affiliation:
Institute of Electron Technology, Warsaw, Poland, Institute of Physics
R. Kruszka
Affiliation:
Institute of Electron Technology, Warsaw, Poland, Institute of Physics
A. Kuchuk
Affiliation:
Institute of Electron Technology, Warsaw, Poland, Institute of Physics
J. Szade
Affiliation:
University of Silesia, Katowice, Poland
A. Winiarski
Affiliation:
University of Silesia, Katowice, Poland
A. Barcz
Affiliation:
Institute of Electron Technology, Warsaw, Poland, Institute of Physics Institute of Physics, PAS, Warsaw, Poland
J. Jasinski
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Z. Liliental-Weber
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Get access

Abstract

We have investigated two approaches for the fabrication of thin ZnO films: sputter deposition from the ZnO target and thermal oxidation of vacuum deposited Zn. The microstructure and electronic properties after consecutive steps of the formation of n-ZnO/p-GaN contacts have been studied using electron transmission microscopy and x-ray photoelectron spectrometry. We have achieved ohmic contacts by Zn oxidation and explain their ohmic behaviour in terms of a tunnel n+-ZnO - p-GaN junction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Margalith, T., Buchinsky, O., Cohen, D. A., Abare, A. C., Hansen, M., DenBaars, S. P. and Coldren, L.A., Appl. Phys. Lett. 74, 3930 (1999).Google Scholar
2. Sheu, J. K., Su, Y. K., Chi, G. C., Jou, M. J., and Chang, C. M., Appl. Phys. Lett. 72, 3317 (1998).Google Scholar
3. Kaminska, E., Piotrowska, A., Kruszka, R., Papis, E., Golaszewska, K., Kudła, A., Barcz, A., Wawro, A., Szade, J., Winiarski, A., Crystal Res. Technol, accepted for publication.Google Scholar
4. Gotz, W., Johnson, N. M., and Bour, D. P., Appl. Phys. Lett. 68, 3470 (1999).Google Scholar
5. Mori, T., Kozawa, T., Nagai, S., Yamasaki, S., Asami, S., Shibata, N., and Koike, M., Appl. Phys. Lett. 69, 3537 (1996).Google Scholar
6. Klein, A., Appl. Phys. Lett. 77, 2009 (2000).Google Scholar