Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T23:17:32.824Z Has data issue: false hasContentIssue false

Excited State Charge Transfer in Dyads of ZnO Nanocrystals and Organic or Transition Metal Dyes

Published online by Cambridge University Press:  01 February 2011

Julia E. Saunders
Affiliation:
ross0313@umn.edu, University of Minnesota, Chemistry, Minneapolis, Minnesota, United States
Adam S. Huss
Affiliation:
hussx037@umn.edu, University of Minnesota, Chemistry, Minneapolis, Minnesota, United States
Jon Bohnsack
Affiliation:
bohns013@umn.edu, University of Minnesota, Chemistry, Minneapolis, Minnesota, United States
Kent R. Mann
Affiliation:
krmann@umn.edu, University of Minnesota, Chemistry, Minneapolis, Minnesota, United States
David A. Blank
Affiliation:
blank@umn.edu, University of Minnesota, Chemistry, Minneapolis, Minnesota, United States
Wayne L. L. Gladfelter
Affiliation:
wlg@umn.edu, University of Minnesota, Chemistry, Minneapolis, Minnesota, United States
Get access

Abstract

To better understand the specific charge transfer events that occur within a dye-sensitized solar cell (DSSC), we synthesized well-defined ZnO:dye dyads. The ZnO nanocrystals were synthesized following literature procedures from zinc acetate and a hydroxide source in ethanol. The absorption onset of the ZnO nanocrystals was observed using UV-vis measurements, from which estimated nanocrystal diameters were determined. At room temperature, the synthesis yielded nanocrystals ranging in diameter from 2-4 nm. Dispersions of ZnO nanocrystals in ethanol were mixed with solutions containing 5΄΄-phenyl-3΄,4΄-di(nbutyl)-[2,2΄:5΄,2΄΄] terthiophene-5-carboxylic acid. Using FT-IR and fluorescence spectroscopy, it was verified that the dye molecules were adsorbed to the ZnO surface via their carboxylate groups while the number of dye molecules adsorbed to the surface was quantified using a combination of techniques. Adsorption isotherms were employed to probe surface coverage of the dye onto the nanocrystals to yield an adsorption equilibrium constant of 1.5 ± 0.2 x 105 M-1. The ability of ZnO nanocrystals to quench the emission of the dye by an electron transfer mechanism was observed and elucidated using ultra-fast laser spectroscopy where the time-scale for electron injection from the dye to the ZnO was determined to be 5.5 ps.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 O'Regan, B. and Gratzel, M., Nature 353 (6346), 737740 (1991).Google Scholar
2 Graetzel, M., Inorg. Chem. 44 (20), 68416851 (2005).Google Scholar
3 O'Regan, B. and Graetzel, M., Nature 353 (6346), 737740 (1991).Google Scholar
4 Ardo, S. and Meyer, G. J., Chem. Soc. Rev. 38 (1), 115164 (2009).Google Scholar
5 Anderson, N. A. and Lian, T., Annu. Rev. Phys. Chem. 56 (1), 491519 (2005).Google Scholar
6 Tachibana, Y., Nazeeruddin, M. K., Gratzel, M., Klug, D. R. and Durrant, J. R., Chemical Physics 285 (1), 127132 (2002).Google Scholar
7 Kallioinen, J., Benkoe, G., Myllyperkioe, P., Khriachtchev, L., Skrman, B., Wallenberg, R., Tuomikoski, M., Korppi-Tommola, J., Sundstroem, V. and Yartsev, A. P., J. Phys. Chem. B 108 (20), 63656373 (2004).Google Scholar
8 Wenger, B., Graetzel, M. and Moser, J.-E., Journal of the American Chemical Society 127 (35), 1215012151 (2005).Google Scholar
9 Law, M., Greene, L. E., Johnson, J. C., Saykally, R. and Yang, P., Nature Materials 4 (6), 455459 (2005).Google Scholar
10 Wolden, C. A., Barnes, T. M., Baxter, J. B. and Aydil, E. S., Journal of Applied Physics 97 (4), 043522/043521–043522/043527 (2005).Google Scholar
11 Baxter, J. B. and Aydil, E. S., Solar Energy Materials & Solar Cells 90 (5), 607622 (2006).Google Scholar
12 Ravirajan, P., Peiro, A. M., Nazeeruddin, M. K., Graetzel, M., Bradley, D. D. C., Durrant, J. R. and Nelson, J., J. Phys. Chem. B 110 (15), 76357639 (2006).Google Scholar
13 Bahnemann, D. W., Kormann, C. and Hoffmann, M. R., Journal of Physical Chemistry 91 (14), 37893798 (1987).Google Scholar
14 Spanhel, L. and Anderson, M. A., Journal of the American Chemical Society 113 (8), 28262833 (1991).Google Scholar
15 Meulenkamp, E. A., J. Phys. Chem. B 102 (29), 55665572 (1998).Google Scholar
16 Wong, E. M., Bonevich, J. E. and Searson, P. C., J. Phys. Chem. B 102 (40), 77707775 (1998).Google Scholar
17 Schwartz, D. A. and Gamelin, D. R., Proceedings of SPIE-The International Society for Optical Engineering 5224 (Nanomaterials and Their Optical Applications), 1–7 (2003).Google Scholar
18 Law, M., Goldberger, J. and Yang, P., Annual Review of Materials Research 34, 83122 (2004).Google Scholar
19 Yin, M., Gu, Y., Kuskovsky, I. L., Andelman, T., Zhu, Y., Neumark, G. F. and O'Brien, S., Journal of the American Chemical Society 126 (20), 62066207 (2004).Google Scholar
20 Kahn, M. L., Monge, M., Colliere, V., Senocq, F., Maisonnat, A. and Chaudret, B., Advanced Functional Materials 15 (3), 458468 (2005).Google Scholar
21 Andelman, T., Gong, Y., Polking, M., Yin, M., Kuskovsky, I., Neumark, G. and O'Brien, S., J. Phys. Chem. B 109 (30), 1431414318 (2005).Google Scholar
22 Greene, L. E., Yuhas, B. D., Law, M., Zitoun, D. and Yang, P., Inorganic Chemistry 45 (19), 75357543 (2006).Google Scholar
23 Luo, B., Rossini, J. E. and Gladfelter, W. L., Langmuir 25 (22), 1313313141 (2009).Google Scholar
24 Schwartz, D. A., Norberg, N. S., Nguyen, Q. P., Parker, J. M. and Gamelin, D. R., Journal of the American Chemical Society 125 (43), 1320513218 (2003).Google Scholar
25 Saunders, J. E., Huss, A. S., Mann, K. R., Blank, D. A. and Gladfelter, W. L., manuscript to be submitted.Google Scholar
26 Fillinger, A. and Parkinson, B. A., J. Electrochem. Soc. 146 (12), 45594564 (1999).Google Scholar
27 Fillinger, A., Soltz, D. and Parkinson, B. A., J. Electrochem. Soc. 149 (9), A1146–A1156 (2002).Google Scholar