Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-25T00:39:16.963Z Has data issue: false hasContentIssue false

Effect of Buried Surface Structure on Solid Phase Epitaxy of GE on SI (111)-7×7

Published online by Cambridge University Press:  15 February 2011

Olof C. Hellman*
Affiliation:
Electrotechnical Laboratory, 1–1–4 Umezono, Tsukuba, Ibaraki 305 Japan, and NTT Basic Research Laboratories, 3–9–11 Midori-cho, Musashino, Tokyo 180, Japan
Get access

Abstract

We study the crystallization of a thin film of amorphous Ge deposited at room temperature on Si (111). Features of the silicon surface buried beneath the Ge film are shown to affect the rate of crystallization. In particular, solid phase epitaxy is observed to be enhanced at surface steps and defects in the surface reconstruction. It is further shown that one-dimensional crystallization patterns can be caused by impurity-Mediated crystallization. Precipitates of an impurity rich phase migrate in the plane of the film, leaving behind a crystalline trail. The Migration path of these precipitates is also dependent on the buried surface structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Takayanagi, K., Tanishiro, Y., Takahashi, S. and Takahashi, M., Surf. Sci. 164 367 (1985).Google Scholar
2. Gossmann, H.J., Feldman, L.C. and Gibson, W.M., Phys. Rev. Lett. 53 (3) 294 (1984).Google Scholar
3. Gibson, J.M., Gossmann, H.J., Bean, J.C., Tung, R.T. and Feldman, L.C., Phys. Rev. Lett. 56 (4) 355 (1986).Google Scholar
4. Robinson, I.K., Waskewicz, W.K., Tung, R.T. and Bohr, J., Phys. Rev. Lett., 57 (21) 2714 (1986).Google Scholar
5. Nygren, E., McCallum, J.C., Thornton, R., Williams, J.S. and Olson, G.L., in Fundamentals of Beam-Solid Interactions and Transient Thermal Processing, Eds. Aziz, M.J., Rehn, L.E. and Stritzker, B. (Mater. Res. Soc. Proc. 100, Pittsburgh, PA, 1993), p. 405.Google Scholar
6. Hellman, O.C., to be published in J. Vac. Sci. Tech.Google Scholar
7. Telieps, W. and Bauer, E., Surf. Sci. 162 p. 163 (1985)Google Scholar
Bauer, E., Mundshau, M., Sweich, W. and Telieps, W., J. Vac. Sci. Tech A 9 (3) p. 1007 (1991).CrossRefGoogle Scholar
8. Osakabe, N., Tanishiro, Y., Yagi, K. and Honjo, G., Surf. Sci. 109 353 (1981).Google Scholar
9. Hellman, O.C., in Determining Nanoscale Physical Properties of materials by microscopy and Spectroscopy, Eds. Sarikaya, M., Isaacson, M. and Wickramasinghe, H.K. (Mater. Res. Soc. Proc. 332, Pittsburgh, PA, 1994).Google Scholar
10. Yagi, K., Yamanaka, A., Sato, H., Shima, M., Ohse, H., Ozawa, S. and Tanishiro, Y., Prog. Theor. Phys. 106 303 (1991).Google Scholar
11. Interpretation of Moiré contrast in Bassett, G.A., Menter, J.W. and Pashley, D.W., Proc. Roy. Soc. A 246 345 (1958).Google Scholar
12. Interpretation of strain, amplitude and phase contrast in Pohland, O., Tong, X. and Gibson, J.M., J. Vac. Sci. Tech. A ll (4) 1837 (1993) and references therein.Google Scholar
13. Spaepen, F. and Turnbull, D. in Laser-Solid Interactions and Laser Processing, Eds. Ferris, S.D., Leamy, H.J. and Poate, J.M. (AIP Conf. Proc. 50, New York, 1979), p. 73;Google Scholar
Williams, J.S. and Elliman, R.G., Phys. Rev. Lett., 51 p. 1069 (1983);Google Scholar
Aziz, M.J., Sabin, P.C. and Lu, G.Q., Phys. Rev. B 44 (18) (1991) p. 9812;Google Scholar
Custer, J.S. in Crucial Issues in Semiconductor Materials and Processing Technologies, Eds. Coffa, S. et al., (Kluwer Academic, 1992) p. 477.Google Scholar
14. Paine, D.C, Howard, D.J., Evans, N.D., Greve, D.W., Racanelli, M. and Stoffel, N.G. in Evolution in Thin Film and Surface Microstructure, Eds. Thompson, C.V., Tsao, J.Y. and Srolovitz, D.J. (Mat. Res. Soc. Proc. 202, Pittsburgh, PA, 1991) p. 331.Google Scholar
15. Anthony, T.R. and Cline, H.E., J. Appl. Phys. 43 (5) 2473 (1972).Google Scholar
16. Eaglesham, D.J., Gossmann, H.J. and Cerullo, M., Phys. Rev. Lett. 65 (10) 1227 (1990).Google Scholar
17. Hellman, O.C., to be published.Google Scholar
18. Hibino, H., Shimizu, N., Shinoda, Y. and Ogino, T., this proceedings. Also, J. Vac. Sei Tech. A ll (5) 2458 (1993).Google Scholar
19. Köhler, U., Demuth, J.E. and Hamers, R.J., J. Vac. Sci. Tech. A 7 (4) 2860 (1989);Google Scholar
Tochihara, H. and Shimada, W., Surf. Sci. 296 186 (1993).Google Scholar