Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T11:21:49.389Z Has data issue: false hasContentIssue false

A Roe-type scheme for two-phase shallow granular flows over variable topography

Published online by Cambridge University Press:  30 July 2008

Marica Pelanti
Affiliation:
Département de Mathématiques et Applications, École Normale Supérieure, 45 rue d'Ulm, 75230 Paris Cedex 05, France. Marica.Pelanti@ens.fr
François Bouchut
Affiliation:
CNRS and Département de Mathématiques et Applications, École Normale Supérieure, 45 rue d'Ulm, 75230 Paris Cedex 05, France. Francois.Bouchut@ens.fr
Anne Mangeney
Affiliation:
Équipe de Sismologie, Institut de Physique du Globe de Paris, 4 place Jussieu, 75252 Paris Cedex 05, France. mangeney@ipgp.jussieu.fr Institute for Nonlinear Science, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0402, USA.
Get access

Abstract

We study a depth-averaged model of gravity-driven flows made of solid grains and fluid, moving over variable basal surface. In particular, we are interested in applications to geophysical flows such as avalanches and debris flows, which typically contain both solid material and interstitial fluid. The model system consists of mass and momentum balance equations for the solid and fluid components, coupled together by both conservative and non-conservative terms involving the derivatives of the unknowns, and by interphase drag source terms. The system is hyperbolic at least when the difference between solid and fluid velocities is sufficiently small. We solve numerically the one-dimensional model equations by a high-resolution finite volume scheme based on a Roe-type Riemann solver. Well-balancing of topography source terms is obtained via a technique that includes these contributions into the wave structure of the Riemann solution. We present and discuss several numerical experiments, including problems of perturbed steady flows over non-flat bottom surface that show the efficient modeling of disturbances of equilibrium conditions.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, T.B. and Jackson, R., A fluid-dynamical description of fluidized beds: Equations of motion. Ind. Eng. Chem. Fundam. 6 (1967) 527539. CrossRef
Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R. and Perthame, B., A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25 (2004) 20502065. CrossRef
Bale, D., LeVeque, R.J., Mitran, S. and Rossmanith, J.A., A wave-propagation method for conservation laws and balance laws with spatially varying flux functions. SIAM J. Sci. Comput. 24 (2002) 955978. CrossRef
F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources. Birkhäuser-Verlag (2004).
Bouchut, F. and Westdickenberg, M., Gravity driven shallow water models for arbitrary topography. Comm. Math. Sci. 2 (2004) 359389.
Castro, M.J., Macías, J. and Parés, C., Q-scheme, A for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system. ESAIM: M2AN 35 (2001) 107127. CrossRef
Castro, M.J., García Rodríguez, J.A., González-Vida, J.M., Macías, J., Parés, C. and Vázquez-Cendón, M.E., Numerical simulation of two layer shallow water flows through channels with irregular geometry. J. Comput. Phys. 195 (2004) 202235. CrossRef
Denlinger, R.P. and Iverson, R.M., Flow of variably fluidized granular masses across three-dimensional terrain: 2. Numerical predictions and experimental tests. J. Geophys. Res. 106 (2001) 553566. CrossRef
Denlinger, R.P. and Iverson, R.M., Granular avalanches across irregular three-dimensional terrain: 1. Theory and computation. J. Geophys. Res. 109 (2004) F01014, doi:10.1029/2003JF000085. CrossRef
Gallouët, T., Hérard, J.-M and Seguin, N., Some approximate Godunov schemes to compute shallow-water equations with topography. Comput. Fluids 32 (2003) 479513. CrossRef
D. Gidaspow, Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions. Academic Press, New York (1994).
E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer-Verlag, New York (1996).
Gosse, L., A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms. Comput. Math. Appl. 39 (2000) 135159. CrossRef
N. Goutal and F. Maurel, Proceedings of the 2nd Workshop on Dam-Break Wave Simulation. Technical report EDF-DER Report HE-43/97/016/B, Chatou, France (1997).
Gray, J.M.N.T., Wieland, M. and Hutter, K., Gravity driven free surface flow of granular avalanches over complex basal topography. Proc. R. Soc. London S. A 455 (1999) 18411874. CrossRef
Greenberg, J.M. and LeRoux, A.Y., A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33 (1996) 116. CrossRef
Harten, A. and Hyman, J.M., Self-adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comput. Phys. 50 (1983) 235269. CrossRef
Hutter, K., Siegel, M., Savage, S.B. and Nohguchi, Y., Two-dimensional spreading of a granular avalanche down an inclined plane, part I. Theory. Acta Mech. 100 (1993) 3768. CrossRef
Iverson, R.M., The physics of debris flows. Rev. Geophys. 35 (1997) 245296. CrossRef
Iverson, R.M. and Denlinger, R.P., Flow of variably fluidized granular masses across three-dimensional terrain: 1, Coulomb mixture theory. J. Geophys. Res. 106 (2001) 537552. CrossRef
Iverson, R.M., Logan, M. and Denlinger, R.P., Granular avalanches across irregular three-dimensional terrain: 2, Experimental tests. J. Geophys. Res. 109 (2004) F01015, doi:10.1029/2003JF000084. CrossRef
Legros, F., The mobility of long-runout landslides. Eng. Geol. 63 (2002) 301331. CrossRef
R.J. LeVeque, clawpack. http://www.amath.washington.edu/ claw+.
LeVeque, R.J., Wave propagation algorithms for multi-dimensional hyperbolic systems. J. Comput. Phys. 131 (1997) 327353. CrossRef
LeVeque, R.J., Balancing source terms and flux gradients in high-resolution Godunov methods: The quasi-steady wave-propagation algorithm. J. Comput. Phys. 146 (1998) 346365. CrossRef
R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems. Cambridge University Press (2002).
R.J. LeVeque and D.L. George, High-resolution finite volume methods for the shallow water equations with bathymetry and dry states, in Proceedings of Long-Wave Workshop, Catalina, 2004, P.L.-F. Liu, H. Yeh and C. Synolakis Eds., Advances Numerical Models for Simulating Tsunami Waves and Runup, Advances in Coastal and Ocean Engineering 10, World Scientific (2008) 43–73.
LeVeque, R.J. and Pelanti, M., A class of approximate Riemann solvers and their relation to relaxation schemes. J. Comput. Phys. 172 (2001) 572591. CrossRef
Mangeney, A., Bouchut, F., Thomas, N., Vilotte, J.-P. and Bristeau, M.-O., Numerical modeling of self-channeling granular flows and of their levee-channel deposits. J. Geophys. Res. 112 (2007) F02017, doi:10.1029/2006JF000469. CrossRef
Mangeney-Castelnau, A., Vilotte, J.-P., Bristeau, M.-O., Perthame, B., Bouchut, F., Simeoni, C. and Yernini, S., Numerical modeling of avalanches based on Saint-Venant equations using a kinetic scheme. J. Geophys. Res. 108 (2003) 2527, doi:10.1029/2002JB002024. CrossRef
Mangeney-Castelnau, A., Bouchut, F., Vilotte, J.-P., Lajeunesse, E., Aubertin, A. and Pirulli, M., On the use of Saint-Venant equations to simulate the spreading of a granular mass. J. Geophys. Res. 110 (2005) B09103, doi:10.1029/2004JB003161. CrossRef
Massoudi, M., Constitutive relations for the interaction force in multicomponent particulate flows. Int. J. Non-Linear Mech. 38 (2003) 313336. CrossRef
Noelle, S., Pankratz, N., Puppo, G. and Natvig, J.R., Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. J. Comput. Phys. 213 (2006) 474499. CrossRef
Parés, C. and Castro, M.J., On the well-balance property of Roe's method for nonconservative hyperbolic systems. Applications to shallow-water systems. ESAIM: M2AN 38 (2004) 821852. CrossRef
Patra, A.K., Bauer, A.C., Nichita, C.C., Pitman, E.B., Sheridan, M.F., Bursik, M., Rupp, B., Webber, A., Stinton, A.J., Namikawa, L.M. and Renschler, C.S., Parallel adaptive numerical simulation of dry avalanches over natural terrain. J. Volcanology Geotherm. Res. 139 (2005) 121. CrossRef
M. Pelanti, Wave Propagation Algorithms for Multicomponent Compressible Flows with Applications to Volcanic Jets. Ph.D. thesis, University of Washington, USA (2005).
Pelanti, M. and LeVeque, R.J., High-resolution finite volume methods for dusty gas jets and plumes. SIAM J. Sci. Comput. 28 (2006) 13351360. CrossRef
Pitman, E.B. and Le, L., A two-fluid model for avalanche and debris flows. Phil. Trans. R. Soc. A 363 (2005) 15731601. CrossRef
Pitman, E.B., Nichita, C.C., Patra, A.K., Bauer, A.C., Sheridan, M.F. and Bursik, M., Computing granular avalanches and landslides. Phys. Fluids 15 (2003) 36383646. CrossRef
Pudasaini, S.P. and Hutter, K., Rapid shear flows of dry granular masses down curved and twisted channels. J. Fluid Mech. 495 (2003) 193208. CrossRef
Pudasaini, S.P., Wang, Y. and Hutter, K., Modelling debris flows down general channels. Natural Hazards and Earth System Sciences 5 (2005) 799819. CrossRef
Pudasaini, S.P., Wang, Y. and Hutter, K., Rapid motions of free-surface avalanches down curved and twisted channels and their numerical simulations. Phil. Trans. R. Soc. A 363 (2005) 15511571. CrossRef
Rankine, W.J.M., On the stability of loose earth. Phil. Trans. R. Soc. 147 (1857) 927. CrossRef
Roe, P.L., Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43 (1981) 357372. CrossRef
Savage, S.B. and Hutter, K., The motion of a finite mass of granular material down a rough incline. J. Fluid. Mech. 199 (1989) 177215. CrossRef
Savage, S.B. and Hutter, K., The dynamics of avalanches of granular materials from initiation to runout, part I. Analysis. Acta Mech. 86 (1991) 201223. CrossRef
Suliciu, I., On modelling phase transitions by means of rate-type constitutive equations, shock wave structure. Internat. J. Engrg. Sci. 28 (1990) 829841. CrossRef
Suliciu, I., Some stability-instability problems in phase transitions modelled by piecewise linear elastic or viscoelastic constitutive equations. Internat. J. Engrg. Sci. 30 (1992) 483494. CrossRef
Tai, Y.C., Noelle, S., Gray, J.M.N.T. and Hutter, K., Shock-capturing and front-tacking methods for dry granular avalanches. J. Comput. Phys. 175 (2002) 269301. CrossRef
E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer-Verlag, Berlin, Heidelberg (1997).
van Wachem, B.G.M. and Almstedt, A.E., Methods for multiphase computational fluid dynamics. Chem. Eng. J. 96 (2003) 8198. CrossRef
Vázquez-Cendón, M.E., Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry. J. Comput. Phys. 148 (1999) 497526. CrossRef
Vollmöller, P., A shock-capturing wave-propagation method for dry and saturated granular flows. J. Comput. Phys. 199 (2004) 150174. CrossRef
Vreugdenhil, C.B., Two-layer shallow-water flow in two dimensions, a numerical study. J. Comput. Phys. 33 (1979) 169184. CrossRef
Wang, Y. and Hutter, K., A constitutive model of multiphase mixtures and its application in shearing flows of saturated solid-fluid mixtures. Granul. Matter 1 (1999) 163181. CrossRef
Wang, Y. and Hutter, K., A constitutive theory of fluid-saturated granular materials and its application in gravitational flows. Rheol. Acta 38 (1999) 214223. CrossRef