Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T14:19:28.091Z Has data issue: false hasContentIssue false

Echinoderm skeletal crystallography and paleobiological applications

Published online by Cambridge University Press:  21 July 2017

B. E. Bodenbender*
Affiliation:
Department of Geological and Environmental Sciences, Hope College, Holland, Michigan 49422-9000, USA
Get access

Abstract

The crystallographic orientations of echinoderm skeletal elements can supplement standard morphological comparisons in the exploration of echinoderm evolution. At a coarse scale, many echinoderms share a crystallographic pattern in which c axes radiate away from the axis of pentaradial symmetry. Within this common pattern, however, c axes of different taxa can differ dramatically in their degree of variability, angles of inclination, and relationships to the external morphology of skeletal elements. Crystallographic data reflect a variety of taxon-specific influences and therefore reveal different information in different taxa. In echinoids, orientations of c axes in coronal plates correlate well with high-level taxonomic groupings, while c axes of apical plates record modes of larval development. In blastoids, c axes of radial plates have a structural interpretation, with the c axis oriented parallel to the orientation of the surface of the radial plate during its initial growth stages. In crinoids, c axes do not correlate with taxonomic group, plate morphology, or developmental sequence, but instead correlate with relative positions of skeletal elements on the calyx. Although their full potential has yet to be explored, the varied crystallographic patterns in echinoderms have been used to clarify skeletal structure, characterize developmental anomalies, and infer homologies of skeletal plates both within specimens and between groups. A axes are less constrained in their orientations than c axes and offer less promise of revealing novel paleobiological information.

Type
Research Article
Copyright
Copyright © 1997 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ausich, W. I. 1997. Calyx plate homologies and early evolutionary history of the Crinoidea, p. 289304. In Waters, J. A. and Maples, C. G. (eds.), Geobiology of Echinoderms. Paleontological Society Papers, 3.Google Scholar
Blake, D. F., and Peacor, D. R. 1981. Biomineralization in crinoid echinoderms: characterization of crinoid skeletal elements using TEM and STEM microanalysis. Scanning Electron Microscopy, 3:321328.Google Scholar
Blake, D. F., Peacor., D. R. and Allard, L. F. 1984. Ultrastructural and microanalytical results from echinoderm calcite: implications for biomineralization and diagenesis of skeletal material. Micron and Microscopica Acta, 15:8590.Google Scholar
Bodenbender, B. E. 1990. Crystallography of edrioasteroid ambulacral cover plates. , University of Michigan, Ann Arbor, 24 p.Google Scholar
Bodenbender, B. E. 1994. Skeletal crystallography in cladistic and stratocladistic investigations of blastoid phylogeny. Unpublished Ph.D. dissertation, University of Michigan, Ann Arbor, 287 p.Google Scholar
Bodenbender, B. E. 1995. Morphological, crystallographic, and stratigraphic data in cladistic analyses of blastoid phylogeny. Contributions from the Museum of Paleontology, The University of Michigan, 29:201257.Google Scholar
Bodenbender, B. E. 1996a. Patterns of crystallographic axis orientation in blastoid skeletal elements. Journal of Paleontology, 70:466484.Google Scholar
Bodenbender, B. E. 1996b. Orientations of a axes in echinoid apical elements. Geological Society of America Abstracts with Programs, 28(7):A298.Google Scholar
Bodenbender, B. E. and Ausich, W. I. 1996. Orientations of crystallographic axes in skeletal elements of Ordovician crinoids. Sixth North American Paleontological Convention Abstracts of Papers. Paleontological Society Special Publication, 8:39.Google Scholar
Dillaman, R. M., and Hart, H. V. 1981. X-ray evaluation of a SEM technique for determining the crystallography of echinoid skeletons. Scanning Electron Microscopy, 3:313320.Google Scholar
Emlet, R. B. 1982. Echinoderm calcite: a mechanical analysis from larval spicules. Biological Bulletin, 163:264275.Google Scholar
Emlet, R. B. 1985. Crystal axes in Recent and fossil adult echinoids indicate trophic mode in larval development. Science, 230:937940.Google Scholar
Fisher, D. C. 1982. Stylophoran skeletal crystallography: testing the calcichordate theory of vertebrate origins. Geological Society of America Abstracts with Programs, 14(7):488.Google Scholar
Fisher, D. C., and Bodenbender, B. E. 1993. CalcAxes: a program for computation of calcite crystallographic axis orientations. Contributions from the Museum of Paleontology, The University of Michigan, 28:327363.Google Scholar
Jablonski, D., and Lutz, R. A. 1983. Larval ecology of marine benthic invertebrates: paleobiological implications. Biological Reviews, 58:2189.Google Scholar
Jefferies, R. P. S. 1986. The Ancestry of the Vertebrates. Cambridge University Press, Cambridge, 376 p.Google Scholar
Jefferies, R. P. S. 1997. How chordates and echinoderms separated from each other and the problem of dorso-ventral inversion, p. 249266. In Waters, J. A. and Maples, C. G. (eds.), Geobiology of Echinoderms. Paleontological Society Papers, 3.Google Scholar
Jesionek-Szymanska, W. 1959. Remarks on the structure of the apical system of irregular echinoids. Acta Palaeontologica Polonica, 4:339350.Google Scholar
Kästle, B. 1982. Orientierung der a-Achsen im Kalzit von Crinoiden-Stielgliedern und-Armen. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 8:491500.Google Scholar
Lucas, M. G. 1953. Étude, au microscope polarisant, des hydrospires des blastoïdes, p. 635637. In J. Piveteau, Traité de Paléontologie, 3. Masson et Cie., Paris.Google Scholar
Mooi, R., and David, B. 1997. Skeletal homologies of echinoderms, p. 305335. In Waters, J. A. and Maples, C. G. (eds.), Geobiology of Echinoderms. Paleontological Society Papers, 3.Google Scholar
Okazaki, K. 1960. Skeleton formation of sea urchin larvae II. Organic matrix of the spicule. Embryologia, 5:283320.CrossRefGoogle Scholar
Okazaki, K., Dillaman, R. M., and Wilbur, K. M. 1981. Crystalline axes of the spine and test of the sea urchin Strongylocentrotus purpuratus: determination by crystal etching and decoration. Biological Bulletin, 161:402415.Google Scholar
Okazaki, K., and Inoué, S. 1976. Crystal property of the larval sea urchin spicule. Development, Growth, and Differentiation, 18:413434.CrossRefGoogle ScholarPubMed
O'Neill, P. L. 1981. Polycrystalline echinoderm calcite and its fracture mechanics. Science, 213:646648.Google Scholar
Parsley, R. L. 1997. The echinoderm classes Stylophora and Homoiostelea: non Calcichordata, p. 225248. In Waters, J. A. and Maples, C. G. (eds.), Geobiology of Echinoderms. Paleontological Society Papers, 3.Google Scholar
Raup, D. M. 1959. Crystallography of echinoid calcite. Journal of Geology, 67:661674.CrossRefGoogle Scholar
Raup, D. M. 1960. Ontogenetic variation in the crystallography of echinoid calcite. Journal of Paleontology, 34:10411050.Google Scholar
Raup, D. M. 1962a. The phylogeny of calcite crystallography in echinoids. Journal of Paleontology, 36:793810.Google Scholar
Raup, D. M. 1962b. Crystallographic data in echinoderm classification. Systematic Zoology, 11:97108.CrossRefGoogle Scholar
Raup, D. M. 1965. Crystal orientations in the echinoid apical system. Journal of Paleontology, 39:934951.Google Scholar
Raup, D. M. 1966. Crystallographic data for echinoid coronal plates. Journal of Paleontology, 40:555568.Google Scholar
Raup, D. M. and Swan, E. F. 1967. Crystal orientation in the apical plates of aberrant echinoids. Biological Bulletin, 133:618629.Google Scholar
Rozhnov, S. V., and Kushlina, V. B. 1994. Interpretation of new data on Bolboporites Pander, 1830 (Echinodermata; Ordovician), p. 179180. In Bruno, D., Guille, A., Féral, J.-P., and Roux, M. (eds.), Echinoderms through Time. A. A. Balkema, Rotterdam.Google Scholar
Simkiss, K., and Wilbur, K. M. 1989. Biomineralization: Cell Biology and Mineral Deposition. Academic Press, Inc., New York, 337 p.Google Scholar
Tsipursky, S. J., and Buseck, P. R. 1993. Structure of magnesian calcite from sea urchins. American Mineralogist, 78:775781.Google Scholar
Wolpert, L., and Gustafson, T. 1961. Studies on the cellular basis of morphogenesis of the sea urchin embryo: development of the skeletal pattern. Experimental Cell Research, 25:311325.CrossRefGoogle ScholarPubMed