Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T01:21:48.435Z Has data issue: false hasContentIssue false

Analysis of Electromigration- and Stress-Induced Dynamical Response of Voids Confined in Metallic Thin Films

Published online by Cambridge University Press:  26 February 2011

M. Rauf Gungor
Affiliation:
gungor@ecs.umass.edu, University of Massachusetts, Amherst, Department of Chemical Engineering, 686 N Pleasant Street, Amherst, MA, 01003, United States
Jaeseol Cho
Affiliation:
jacho@ecs.umass.edu, University of Massachusetts, Amherst, Department of Chemical Engineering, United States
Dimitrios Maroudas
Affiliation:
maroudas@ecs.umass.edu, University of Massachusetts, Amherst, Department of Chemical Engineering, United States
Get access

Abstract

A theoretical analysis based on self-consistent dynamical simulations is presented of electromigration- and stress-induced surface morphological response of voids confined in metallic thin films. The analysis predicts the onset of stable time-periodic states for the void surface morphological response, which is associated with current-driven wave propagation on the void surface. This time-periodic response is demonstrated under certain electromigration conditions and detailed response diagrams are presented which map the corresponding parameter space to regions of steady, time-periodic, and unstable surface morphological response. The evolution of the electrical resistance of these thin films also is computed, providing an interpretation for experimentally observed time-periodic response of the electrical resistance of metallic interconnect lines on the basis of current-driven void morphological evolution. In addition, we demonstrate significant effects on the electromigration-induced morphologically stable void migration of mechanical stress application in a metallic thin film. Specifically, we find that under certain electromechanical conditions, elastic stress can cause substantial retardation of void motion, as measured by the constant speed of electromigration-induced translation of morphologically stable voids. More importantly, this effect suggests the possibility for complete inhibition of void motion under stress.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ho, P. S. J. Appl. Phys. 41, 64 (1970).Google Scholar
2. Ho, P. S. and Kwok, T., Rep. Prog. Phys. 52, 301 (1989).Google Scholar
3. Thompson, C. V. and Lloyd, J. R., MRS Bull. 18 (12), 19 (1993).Google Scholar
4. Hu, C.-K. and Harper, J. M. E., Mater. Chem. Phys. 52, 5 (1998).Google Scholar
5. Suo, Z., Wang, W., and Yang, M., Appl. Phys. Lett. 64, 1944 (1994); Wang, W. Q., Suo, Z., and Hao, T.-H., J. Appl. Phys. 79, 2394 (1996).Google Scholar
6. Kraft, O. and Arzt, E., Appl. Phys. Lett. 66, 2063 (1995); Kraft, O. and Arzt, E., Acta Mater. 45, 1599 (1997).Google Scholar
7. Gungor, M. R. and Maroudas, D., Surf. Sci. 415, L1055 (1998); M. R. Gungor and D. Maroudas, J. Appl. Phys. 85 2233 (1999).Google Scholar
8. Gungor, M. R. and Maroudas, D., Surf. Sci. 461, L550 (2000); J. S. Cho, M. R. Gungor and D. Maroudas, Surf. Sci. 575, L41L50 (2005).Google Scholar
9. Gungor, M. R., Maroudas, D., and Gray, L. J., Appl. Phys. Lett. 73, 3848 (1998);Google Scholar
Gungor, M. R. and Maroudas, D., Int. J. Fracture 109, 47 (2001).Google Scholar
10. Schimschak, M. and Krug, J., Phys. Rev. Lett. 80, 1674 (1998); Schimschak, M. and Krug, J., J. Appl. Phys. 87, 695 (2000).Google Scholar
11. Mahadevan, M. and Bradley, R. M., J. Appl. Phys. 79, 6840 (1996); Mahadevan, M. and Bradley, R. M., Phys. Rev. B 59, 11037 (1999).Google Scholar
12. Fridline, D. R. and Bower, A. F., J. Appl. Phys. 85, 3168 (1999).Google Scholar
13. Bradley, R. M., Phys. Rev. E 65, 036603 (2002).Google Scholar
14. Cho, J. S., Gungor, M. R., and Maroudas, D., Appl. Phys. Lett. 85, 2214 (2004).Google Scholar
15. See e.g., Xia, L., Bower, A. F., Suo, Z., and Shih, C. F., J. Mech. Phys. Solids 45, 1473 (1997).Google Scholar
16. Shingubara, S., Kaneko, H., and Saitoh, M., J. Appl. Phys. 69, 207 (1991).Google Scholar
17. Kuhn, P., Krug, J., Hausser, F., and Voigt, A., Phys. Rev. Lett. 94, 166105 (2005).Google Scholar