Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T11:39:49.085Z Has data issue: false hasContentIssue false

Phase Separation in Multiple ZnO /Cubic- MgxZn1−xO Superlattice Heterostructures Observed Via High Resolution Transmission Electron Microscopy

Published online by Cambridge University Press:  17 March 2011

A. Kvit
Affiliation:
NSF Center for Advanced Materials and Smart Structures, Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7916
G. Dusher
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6048
A. K. Sharma
Affiliation:
NSF Center for Advanced Materials and Smart Structures, Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7916
C. Jin
Affiliation:
NSF Center for Advanced Materials and Smart Structures, Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7916
J. Narayan
Affiliation:
NSF Center for Advanced Materials and Smart Structures, Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7916
J. Muth
Affiliation:
Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695-7911
C.W Teng
Affiliation:
Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695-7911
Get access

Abstract

We have synthesized ZnMgO alloy of wurtzite (Mg content equals to 0.0=0.34) and cubic (Zn content equals to 0.0- 0.18) phases using nonequilibrium pulsed laser deposition method. Epitaxial films of ZnMgO wurtzite structure have been grown on (0001) sapphire substrates. Using JEOL-2010 field-emission transmission electron microscope equipped with STEM and Gatan image filter, we can perform atomic structure, STEM-Z, electron energy loss spectroscopy and imaging simultaneously. Such studies on the ZnO/MgZnO superlattices provide first direct evidence of phase-separation in the range 3 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ohtomo, A., Kawasaki, M., Koida, T., Masubuchi, K., and Koinuma, H., Sakurai, Y., Yoshida, Y., Yasuda, T. and Segawa, Y., Appl. Phys. Lett, 72, No. 19, 2466, 1988 Google Scholar
2. Sharma, A.K., Narayan, J., Muth, J.F., Teng, C.W., Jin, C., Kvit, A., Kolbas, R.M., and Holland, O.W., Appl. Phys. Lett., 75, 3327 (1999).Google Scholar
3. Segnit, E. R. and Holland, A. E., J.Am. Ceram. Soc., 48, 412 (1965)Google Scholar
4. Sorokin, V.S., Sorokin, S.V., Kaygorodov, V. A., Ivanov, S.V., J.Cryst. Growth, 214/215, 130 (2000).Google Scholar
5. Lemos, V., Silveira, E., Leite, J. R., Tabata, A., R.Trentin,, L. Scolfaro, M. R., Frey, T., As, D.J., Schikora, D., Lischka, K., Phys. Rev. Lett., 84, 3666 (2000).Google Scholar
6. Iwata, K., Asahi, H., Asami, K., Gonda, S., J. Cryst. Growth, 175/176, 150 (1997).Google Scholar
7. Hua, G. C., N.Otsuka, Grillo, D.C., Han, J., He, L., Gunshor, R. L., J. Cryst. Growth, 138, 367 (1994).Google Scholar
8. Ahrenkiel, S. P., Bode, M. H., Al-Jassim, M. M., Luo, H., Xin, S. H., Furdyna, J. K., J. Electronic Materials, 24, No.4, 319 (1995).Google Scholar
9. Narayan, J., Dovidenko, K., Sharma, A., and Oktyabrsky, S., J. Appl. Phys., 84, 2597, 1988 Google Scholar