Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T14:20:14.644Z Has data issue: false hasContentIssue false

Influence of hot electrons on the spectra of iron plasma irradiated by femtosecond laser pulses with 1021 W/cm2 intensities

Published online by Cambridge University Press:  04 January 2017

A. Stafford*
Affiliation:
Physics Department, University of Nevada, Reno, NV 89557, USA
A.S. Safronova
Affiliation:
Physics Department, University of Nevada, Reno, NV 89557, USA
A.Ya. Faenov
Affiliation:
Institute for Academic Initiatives, Osaka University, Suita, Osaka 565-0871, Japan Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412, Russia
T.A. Pikuz
Affiliation:
Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412, Russia PPC and Graduate School of Engineering, Osaka University, Suita, Osaka 565-087, Japan
R. Kodama
Affiliation:
Institute for Academic Initiatives, Osaka University, Suita, Osaka 565-0871, Japan PPC and Graduate School of Engineering, Osaka University, Suita, Osaka 565-087, Japan
V.L. Kantsyrev
Affiliation:
Physics Department, University of Nevada, Reno, NV 89557, USA
I. Shrestha
Affiliation:
Physics Department, University of Nevada, Reno, NV 89557, USA
V.V. Shlyaptseva
Affiliation:
Physics Department, University of Nevada, Reno, NV 89557, USA
*
Address correspondence and reprint requests to: A. Stafford, Department of Physics, University of Nevada, (0220) 1664 N. Virginia St. Reno, NV 89557, USA. E-mail: austins@unr.edu

Abstract

The use of laboratory experiments as plasma creating sources is a valuable tool for understanding astrophysical observations. Recently plasma created through irradiation by lasers with relativistic intensities has been used to study effects of hot electrons and X-ray pumping on X-ray formation of multiply charged ions spectra. This paper discusses the formation of K-shell Fe spectra recorded from a plasma irradiated by 35 fs pulses with intensities of 1021 W/cm2. Modeling of the spectra suggests three different regions of plasma radiation including a cold ~10 eV region, a mild ~700 eV region, and a hot ~3500 eV region. The influence of hot electrons and X-ray pumping is discussed and a comparison with K-shell Fe spectra from a 1 MA X-pinch experiment is included to highlight the differences due to the shorter time frame of the laser–plasma interaction experiment.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdallah, J., Batani, D., Desai, T., Lucchini, G., Faenov, A., Pikuz, T. & Magunov, A. (2007). High resolution X-ray emission spectra from picosecond laser irradiated Ge targets. Laser Part. Beams 25, 245252.Google Scholar
Ammosov, M.V., Delone, N.B. & Krainov, V.P. (1986). Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Soviet Phys. J. Exp. Theoretical Phys. 64, 11911194.Google Scholar
Beiersdorfer, P. (2003). Laboratory X-ray astrophysics. Ann. Rev. Astron. Astrophys. 41, 343390.CrossRefGoogle Scholar
Beiersdorfer, P., Phillips, T., Jacobs, V., Hill, K., Bitter, M., von Goeler, S. & Kahn, S.M. (1993). High-resolution measurements, line identification, and spectral modeling of Kα transitions in Fe XVIII–XXV. Astrophys. J. 409, 846859.Google Scholar
Beiersdorfer, P., von Goeler, S., Bitter, M. & Thorn, D.B. (2001). Measurement of the 3d→2p resonance to intercombination line-intensity ratio in neonlike Fe XVII, Ge XXIII, and Se XXV. Phys. Rev. A 64, 032705.CrossRefGoogle Scholar
Blasco, F., Stenz, C., Salin, F., Faenov, A.Ya., Magunov, A.I., Pikuz, T.A. & Skobelev, I.Yu. (2001). Portable, tunable, high-luminosity spherical crystal spectrometer with an x-ray charge coupled device, for high-resolution x-ray spectromicroscopy of clusters heated by femtosecond laser pulses. Rev. Sci. Instrum. 72, 19561962.Google Scholar
Chen, S.N., Patel, P.K., Chung, H.K., Kemp, A.J., Le Pape, S., Maddox, B.R., Wilks, S.C., Stephens, R.B. & Beg, F.N. (2009). X-ray spectroscopy of buried layer foils irradiated at laser intensities in excess of 1020 W/cm2 . Phys. Plasmas 16, 062701.Google Scholar
Colgan, J., Abdallah, J. Jr., Faenov, A.Ya., Pikuz, S.A., Wagenaars, E., Booth, N., Culfa, O., Dance, R.J., Evans, R.G., Gray, R.J., Kaempfer, T., Lancaster, K.L., McKenna, P., Rossall, A.L., Skobelev, I.Yu., Schulze, K.S., Uschmann, I., Zhidkov, A.G. & Woolsey, N.C. (2013). Exotic dense-matter states pumped by a relativistic laser plasma in the radiation-dominated regime. Phys. Rev. Lett. 110, 125001.CrossRefGoogle ScholarPubMed
Colgan, J., Abdallah, J. Jr., Faenov, A.Ya., Pikuz, T.A., Skobelev, I.Yu., Fortov, V.E., Fukuda, Y., Akahane, Y., Aoyama, M., Inoue, N. & Yamakawa, K. (2008). The role of hollow atoms in the spectra of an ultrashort-pulse-laser-driven Ar cluster target. Laser Part. Beams 26, 8393.CrossRefGoogle Scholar
Colgan, J., Faenov, A.Ya., Pikuz, S.A., Tubman, E., Butler, N.M.H., Abdallah, J. Jr., Dance, R.J., Pikuz, T.A., Skobelev, I.Yu., Alkhimova, M.A., Booth, N., Green, J., Gregory, C., Andreev, A., Lӧtz, R., Uschmann, I., Zhidkov, A., Kodama, R., McKenna, P. & Woolsey, N. (2016). Evidence of high-n hollow-ion emission from Si ions pumped by ultraintense x-rays from relativistic laser plasma. Eur. Phys. Lett. 114, 35001.Google Scholar
Decaux, V., Beiersdorfer, P., Kahn, S.M. & Jacobs, V.L. (1997). High resolution measurement of the Kα spectrum of Fe XXV-XVIII: new spectral diagnostics of nonequilibrium astrophysical plasmas. Astrophys. J. 482, 10761084.CrossRefGoogle Scholar
Decaux, V., Beiersdorfer, P., Osterheld, A., Chen, M. & Kahn, S.M. (1995). High-resolution measurements of the Kα spectra of low-ionization species of iron: a new spectral signature of nonequilibrium ionization conditions in you supernova remnants. Astrophys. J. 443, 464468.Google Scholar
Drake, J.J., Swartz, D.A., Beiersdorfer, P., Brown, G.V. & Kahn, S.M. (1999). On photospheric fluorescence and the nature of the 17.62 Å feature in solar x-ray spectra. Astrophys. J. 521, 839843.Google Scholar
Eze, R.N.C. (2014). Fe Kα line in hard X-ray emitting symbiotic stars. Monthly Notices R. Astron. Soc. 437, 857861.CrossRefGoogle Scholar
Faenov, A.Ya., Colgan, J., Hansen, S.B., Zhidkov, A., Pikuz, T.A., Nishiuchi, M., Pikuz, S.A., Skobelev, I.Yu., Abdallah, J., Sakaki, H., Sagisaka, A., Pirozhkov, A.S., Ogura, K., Fukuda, Y., Kanasaki, M., Hasegawa, N., Nishikino, M., Kando, M., Watanabe, Y., Kawachi, T., Masuda, S., Hosokai, T., Kodama, R. & Kondo, K. (2015 a). Nonlinear increase of X-ray intensities from thin foils irradiated with a 200 TW femtosecond laser. Sci. Rep. 5, 13436.Google Scholar
Faenov, A.Ya., Pikuz, S.A., Erko, A.I., Bryunetkin, B.A., Dyakin, V.M., Ivanenkov, G.V., Mingaleev, A.R., Pikuz, T.A., Romanova, V.M. & Shelkovenko, T.A. (1994). High-performance X-ray spectroscopic devices for plasma microsources investigations. Phys. Scripta 50, 333338.CrossRefGoogle Scholar
Faenov, A.Ya., Skobelev, I.Yu., Pikuz, T.A., Pikuz, S.A. Jr., Kodama, R. & Fortov, V.E. (2015 b). Diagnostics of warm dense matter by high-resolution X-ray spectroscopy of hollow ions. Laser Part. Beams 33, 2739.CrossRefGoogle Scholar
Gu, M.F. (2008). The flexible atomic code. Can. J. Phys. 86, 675689.Google Scholar
Hansen, S.B., Colgan, J., Faenov, A.Ya., Abdallah, J. Jr., Pikuz, S.A. Jr., Skobelev, I.Yu., Wagenaars, E., Booth, N., Culfa, O., Dance, R.J., Tallents, G.J., Evans, R.G., Gray, R.J., Kaempfer, T., Lancaster, K.L., McKenna, P., Rossall, A.K., Schulze, K.S., Uschmann, I., Zhidkov, A.G. & Woolsey, N.C. (2014). Detailed analysis of hollow ions spectra from dense matter pumped by X-ray emission of relativistic laser plasma. Phys. Plasmas 21, 031213.Google Scholar
Kantsyrev, V.L., Rudakov, L.I., Safronova, A.S., Fedin, D.A., Ivanov, V.V., Velikovich, A.L., Esaulov, A.A., Chuvatin, A.S., Williamson, K., Ouart, N.D., Nalajala, V., Osborne, G., Shrestha, I., Yilmaz, M.F., Pokala, S., Laca, P.J. & Cowan, T.E. (2006). Planar wire array as powerful radiation source. IEEE Trans. Plasma Sci. 34, 22952302.CrossRefGoogle Scholar
Kiriyama, H., Mori, M., Nakai, Y., Shimomura, T., Sasao, H., Tanoue, M., Kanazawa, S., Wakai, D., Sasao, F., Okada, H., Daito, I., Suzuki, M., Kondo, S., Kondo, K., Sugiyama, A., Bolton, P.R., Yokoyama, A., Daido, H., Kawanishi, S., Kimura, T. & Tajima, T. (2010). High temporal and spatial quality petawatt-class Ti:sapphire chirped-pulse amplification laser system. Opt. Lett. 35, 14971499.CrossRefGoogle ScholarPubMed
Magunov, A.I., Faenov, A.Ya., Skobelev, I.Yu., Pikuz, T.A., Dobosz, S., Schmidt, M., Perdrix, M., Meynadier, P., Gobert, O., Normand, D., Stenz, C., Bagnoud, V., Blasco, F., Roche, J.R., Salin, F. & Sharkov, B.Yu. (2003). X-ray spectra of fast ions generated from clusters by ultrashort laser pulses. Laser Part. Beams 21, 7379.Google Scholar
Nishiuchi, M., Sakaki, H., Esirkepov, T.Zh., Nishio, K., Pikuz, T.A., Faenov, A.Ya., Skobelev, I.Yu., Orlandi, R., Sako, H., Pirozhkov, A.S., Matsukawa, K., Sagisaka, A., Ogura, K., Kanasaki, M., Kiriyama, H., Fukuda, Y., Koura, H., Kando, M., Yamauchi, T., Watanabe, Y., Bulanov, S.V., Kondo, K., Imai, K. & Nagamiya, S. (2015). Acceleration of highly charged GeV Fe ions from a low-Z substrate by intense femtosecond laser. Phys. Plasmas 22, 033107.Google Scholar
Ouart, N.D., Safronova, A.S., Faenov, A.Ya., Pikuz, T.A., Gasilov, S.V., Calegari, F., Nisoli, M., De Silvestri, S., Stagira, S., Poletto, L. & Villoresi, P. (2011). Analysis of the simultaneous measurements of iron K- and L-shell radiation from ultrashort laser produced plasmas. J. Phys. B: Atom. Mol. Opt. Phys. 44, 065602.CrossRefGoogle Scholar
Phillips, K.J.H. (2012). The solar photospheric-to-coronal Fe abundance ratio from X-ray fluorescence lines. Monthly Notices R. Astron. Soc. 421, 17571763.Google Scholar
Pikuz, S.A., Faenov, A.Ya., Colgan, J., Dance, R.J., Abdallah, J., Wagenaars, E., N. Booth, E., Culfa, O., Evans, R.G., Gray, R.J., Kaempfer, T., Lancaster, K.L., McKenna, P., Rossall, A.L., Skobelev, I.Yu., Schulze, K.S., Uschmann, I., Zhidkov, A.G. & Woolsey, N.C. (2013). Measurement and simulations of hollow atom X-ray spectra of solid-density relativistic plasma created by high-contrast PW optical laser pulses. High Energy Density Phys. 9, 560567.Google Scholar
Ponti, G., Bianchi, S., Munoz-Darias, T., De Marco, B., Dwelly, T., Fender, R.P., Nandra, K., Rea, N., Mori, K., Haggard, D., Heinke, C.O., Degenaar, N., Aramaki, T., Clavel, M., Goldwurm, A., Hailey, C.J., Israel, G.L., Morris, M.R., Rushton, A. & Terrier, R. (2015). On the Fe K absorption – accretion state connection in the Galactic Centre neutron star X-ray binary AX J1745.6-2901. Monthly Notices R. Astron. Soc. 446, 15361550.Google Scholar
Rajmal, J., Pradhan, A.K., Joshi, V., Shah, K.J., Trivedi, J.J., Kayasth, S.L., Shah, V.M. & Deshpande, M.R. (2006). The Fe-line feature in the x-ray spectrum of solar flares: first results from the SOXS mission. Solar Phys. 239, 217237.Google Scholar
Safronova, A.S., Kantsyrev, V.L., Esaulov, A.A., Ouart, N.D., Safronova, U.I., Shrestha, I. & Williamson, K.M. (2009). X-ray spectroscopy and imaging of stainless steel X-pinches with application to astrophysics. Eur. Phys. J. Special Topics 169, 155158.Google Scholar
Safronova, A.S., Kantsyrev, V.L., Esaulov, A.A., Ouart, N.D., Yilmaz, M.F., Williamson, K.M., Shrestha, I., Osborne, G.C., Greenly, J.B., Chandler, K.M., McBride, R.D., Chalenski, D.A., Hammer, D.A., Kusse, B.R. & LePell, P.D. (2008). Spectroscopy and implosion dynamics of low wire number nested arrays on the 1 MA COBRA generator. Phys. Plasmas 15, 033302.Google Scholar
Zastrau, U., Audebert, P., Bernshtam, V., Brambrink, E., Kämpfer, T., Kroupp, E., Loetzsch, R., Maron, Y., Ralchenko, Yu., Reinholz, H., Röpke, G., Sengebusch, A., Stambulchik, E., Uschmann, I., Weingarten, L. & Förster, E. (2010). Temperature and Kα-yield radial distributions in laser-produced solid-density plasmas imaged with ultrahigh-resolution x-ray spectroscopy. Phys. Rev. E 81, 026406.Google Scholar