Hostname: page-component-857557d7f7-s7d9s Total loading time: 0 Render date: 2025-12-09T07:54:12.172Z Has data issue: false hasContentIssue false

Dose-dependent effect of methyl jasmonate on Drosophila suzukii (Matsumura) (Diptera: Drosophilidae)

Published online by Cambridge University Press:  27 August 2025

Prangthip Parichanon
Affiliation:
Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
Priscilla Farina
Affiliation:
Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
Linda Abenaim
Affiliation:
Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
Barbara Conti*
Affiliation:
Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy Nutrafood Research Center, University of Pisa, Pisa, Italy
*
Corresponding author: Barbara Conti; Email: barbara.conti@unipi.it

Abstract

Drosophila suzukii is a significant pest of soft- and thin-skinned fruit crops. Synthetic pesticides remain the primary control method; however, their use raises concerns about insect resistance and harmful pesticide residues in produce. Methyl jasmonate (MeJA), a plant growth regulator in the jasmonate family, plays a key role in plant defence against herbivores and has been identified as a repellent for arthropods of medical and veterinary relevance. This study examined the effect of MeJA on D. suzukii female oviposition and adult behaviour using two-choice bioassays. In a two-choice cage, doses above 1287.5 µg/filter paper deterred D. suzukii females from oviposition by more than 90% on artificial fruits. Using a two-choice planar olfactometer, MeJA also repelled both sexes with median repellent dose (RD50) values of 55.24 µg/filter paper for females, 55.03 µg/filter paper for males, and 55.14 µg/filter paper for total adults. Interestingly, MeJA demonstrated a dose-dependent dual effect: at 309.0 µg/filter paper, it functioned as a bio-repellent, while lower doses (3.86–15.45 µg/filter paper) acted as an attractant. This dual effect suggests that MeJA could serve as both a repellent and an attractant depending on its dose, with potential applications as a lure in traps.

Information

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alkema, JT, Dicke, M and Wertheim, B (2019) Context-dependence and the development of push-pull approaches for integrated management of Drosophila suzukii. Insects 10(12), 454. doi:10.3390/insects10120454.CrossRefGoogle ScholarPubMed
Amo, L, Mrazova, A, Saavedra, I and Sam, K (2022) Exogenous application of methyl jasmonate increases emissions of volatile organic compounds in pyrenean oak trees, Quercus pyrenaica. Biology 11(1), 84. doi:10.3390/biology11010084.CrossRefGoogle ScholarPubMed
Asplen, MK, Anfora, G, Biondi, A, Choi, DS, Chu, D, Daane, KM and Desneux, N (2015) Invasion biology of spotted wing Drosophila (Drosophila suzukii): A global perspective and future priorities. Journal of Pest Science 88(3), 469494. doi:10.1007/s10340-015-0681-z.CrossRefGoogle Scholar
Atallah, J, Teixeira, L, Salazar, R, Zaragoza, G and Kopp, A (2014) The making of a pest: The evolution of a fruit-penetrating ovipositor in Drosophila suzukii and related species. Proceedings of the Royal Society B: Biological Sciences 281(1781), 20132840. doi:10.1098/rspb.2013.2840.CrossRefGoogle ScholarPubMed
Avdiushko, SA, Brown, GC, Dahlman, DL and Hildebrand, DF (1997) Methyl jasmonate exposure induces insects resistance in cabbage and tobacco. Environmental Entomology 26(3), 642654. doi:10.1093/ee/26.3.642.CrossRefGoogle Scholar
Bayram, A (2018) Methyl jasmonate affects population densities of phytophagous and entomophagus insects in wheat. Applied Ecology and Environmental Research 16(1), 181198. doi:10.15666/aeer/1601181198.CrossRefGoogle Scholar
Bedini, S, Cosci, F, Tani, C, Pierattini, EC, Venturi, F, Lucchi, A, Ioriatti, C, Ascrizzi, R, Flamini, G, Ferroni, G, Taglieri, I and Conti, B (2020) Essential oils as post-harvest crop protectants against the fruit fly Drosophila suzukii: Bioactivity and organoleptic profile. Insects 11(8), 508. doi:10.3390/insects11080508.CrossRefGoogle ScholarPubMed
Bedini, S, Djebbi, T, Ascrizzi, R, Farina, P, Pieracci, Y, Echeverría, MC, Flamini, G, Trusendi, F, Ortega, S, Chiliquinga, A and Conti, B (2024) Repellence and attractiveness: The hormetic effect of aromatic plant essential oils on insect behavior. Industrial Crops and Products 210, 118122. doi:10.1016/j.indcrop.2024.118122.CrossRefGoogle Scholar
Bissinger, BW and Roe, RM (2009) Tick repellents: Past, present, and future. Pesticide Biochemistry and Physiology 96(2), 6379. doi:10.1016/j.pestbp.2009.09.010.CrossRefGoogle Scholar
Bolton, LG, Piñero, JC and Barrett, BA (2021) Olfactory cues from host- and non-host plant odor influence the behavioral responses of adult Drosophila suzukii (Diptera: Drosophilidae) to visual cues. Environmental Entomology 50(3), 571579. doi:10.1093/ee/nvab004.CrossRefGoogle ScholarPubMed
Cahenzli, F, Bühlmann, I, Daniel, C and Fahrentrapp, J (2018) The distance between forests and crops affects the abundance of Drosophila suzukii during fruit ripening, but not during harvest. Environmental Entomology 47(5), 12741279. doi:10.1093/ee/nvy116.CrossRefGoogle Scholar
Calabrese, EJ and Baldwin, LA (2002) Defining hormesis. Human and Experimental Toxicology 21(2), 9197. doi:10.1191/0960327102ht217oa.CrossRefGoogle ScholarPubMed
Cha, DH, Roh, GH, Hesler, SP, Wallingford, A, Stockton, DG, Park, SK and Loeb, GM (2020) 2‐Pentylfuran: A novel repellent of Drosophila suzukii. Pest Management Science 77(4), 17571764. doi:10.1002/ps.6196.CrossRefGoogle ScholarPubMed
Chen, L, Song, J, Wang, J, Ye, M, Deng, Q, Wu, X, Wu, X and Ren, B (2023) Effects of methyl jasmonate fumigation on the growth and detoxification ability of Spodoptera litura to xanthotoxin. Insects 14(2), 145. doi:10.3390/insects14020145.CrossRefGoogle ScholarPubMed
Concha, CM, Figueroa, NE, Poblete, LA, Oñate, FA, Schwab, W and Figueroa, CR (2013) Methyl jasmonate treatment induces changes in fruit ripening by modifying the expression of several ripening genes in Fragaria chiloensis fruit. Plant Physiology and Biochemistry 70, 433444. doi:10.1016/j.plaphy.2013.06.008.CrossRefGoogle ScholarPubMed
Conroy, C, Fountain, MT, Whitfield, EC, Hall, DR, Farman, D and Bray, DP (2024) Methyl N, N‐dimethylanthranilate and ethyl propionate: Repellents effective against spotted wing drosophila, Drosophila suzukii. Pest Management Science 80(7), 31603171. doi:10.1002/ps.8020.CrossRefGoogle ScholarPubMed
Dam, D, Molitor, D and Beyer, M (2019) Natural compounds for controlling Drosophila suzukii. A review. Agronomy for Sustainable Development 39(6), doi:10.1007/s13593-019-0593-z.CrossRefGoogle Scholar
De Ros, G (2024) The economic analyses of the Drosophila suzukii’s invasions: A mini-review. Neotropical Entomology 53(2), 244253. doi:10.1007/s13744-024-01127-8.CrossRefGoogle ScholarPubMed
Edwards, PB (1999) The use of choice tests in host-specificity testing of herbivorous insects. In Host Specificity Testing in Australasia: Towards Improved Assays for Biological Control. 3543.Google Scholar
Egger, B and Koschier, EH (2013) Behavioural responses of Frankliniella occidentalis Pergande larvae to methyl jasmonate and cis-jasmone. Journal of Pest Science 87(1), 5359. doi:10.1007/s10340-013-0532-8.CrossRefGoogle ScholarPubMed
Erland, LAE, Rheault, MR and Mahmoud, SS (2015) Insecticidal and oviposition deterrent effects of essential oils and their constituents against the invasive pest Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). Crop Protection 78, 2026. doi:10.1016/j.cropro.2015.08.013.CrossRefGoogle Scholar
Garboui, SS, Jaenson, TGT, Borg-Karlson, A and Pålsson, K (2007) Repellency of methyl jasmonate to Ixodes ricinus nymphs (Acari: Ixodidae). Experimental and Applied Acarology 42(3), 209215. doi:10.1007/s10493-007-9066-1.CrossRefGoogle ScholarPubMed
Gensch, L, Jantke, K, Rasche, L and Schneider, UA (2024) Pesticide risk assessment in European agriculture: Distribution patterns, ban-substitution effects and regulatory implications. Environmental Pollution 348, 123836. doi:10.1016/j.envpol.2024.123836.CrossRefGoogle ScholarPubMed
Gomes, HDO, Menezes, JMC, Da Costa, JGM, Coutinho, HDM, Teixeira, RNP and Nascimento, RFD (2020) A socio-environmental perspective on pesticide use and food production. Ecotoxicology & Environmental Safety 197, 110627. doi:10.1016/j.ecoenv.2020.110627.CrossRefGoogle Scholar
Gress, BE and Zalom, FG (2022) Development and validation of a larval bioassay and selection protocol for insecticide resistance in Drosophila suzukii. PLoS ONE 17(6), e0270747. doi:10.1371/journal.pone.0270747.CrossRefGoogle ScholarPubMed
Hussain, B, War, AR and Pfeiffer, DG (2023) Jasmonic acid and salicylic acid induced defensive response in wine grapes against Drosophila suzukii (Diptera: Drosophilidae). Heliyon 9(6), e16505. doi:10.1016/j.heliyon.2023.e16505.CrossRefGoogle Scholar
Ioriatti, C, Guzzon, R, Anfora, G, Ghidoni, F, Mazzoni, V, Villegas, TR and Walton, VM (2017) Drosophila suzukii (Diptera: Drosophilidae) contributes to the development of sour rot in grape. Journal of Economic Entomology 111(1), 283292. doi:10.1093/jee/tox292.CrossRefGoogle Scholar
Lee, JC, Bruck, DJ, Curry, H, Edwards, D, Van Steenwyk, RA and Yorgey, BM (2011) The susceptibility of small fruits and cherries to the spotted‐wing drosophila. Drosophila Suzukii Pest Management Science 67(11), 13581367. doi:10.1002/ps.2225.Google Scholar
Otárola-Jiménez, J, Nataraj, N, Bisch-Knaden, S, Hansson, BS and Knaden, M (2024) Oviposition experience affects oviposition preference in Drosophila melanogaster. iScience 27(8), 110472. doi:10.1016/j.isci.2024.110472.CrossRefGoogle ScholarPubMed
Peña-Cortés, H, Barrios, P, Dorta, F, Polanco, V, Sánchez, C, Sánchez, E and Ramírez, I (2004) Involvement of jasmonic acid and derivatives in plant response to pathogen and insects and in fruit ripening. Journal of Plant Growth Regulation 23(3), 246260. doi:10.1007/s00344-004-0035-1.Google Scholar
Reyes-Díaz, M, Lobos, T, Cardemil, L, Nunes-Nesi, A, Retamales, J, Jaakola, L, Alberdi, M and Ribera-Fonseca, A (2016) Methyl jasmonate: An alternative for improving the quality and health properties of fresh fruits. Molecules 21(6), 567. doi:10.3390/molecules21060567.CrossRefGoogle ScholarPubMed
Riseh, RS, Vatankhah, M, Hassanisaadi, M and Kennedy, JF (2024) Macromolecules-based encapsulation of pesticides with carriers: A promising approach for safe and effective delivery. International Journal of Biological Macromolecules 269, 132079. doi:10.1016/j.ijbiomac.2024.132079.CrossRefGoogle Scholar
Roh, GH, Meier, L, Shrestha, B, Hesler, SP, Zhu, JJ, Kendra, PE, Loeb, GM, Tay, J and Cha, DH (2023) A 2-component blend of coconut oil-derived fatty acids as an oviposition deterrent against Drosophila suzukii (Drosophilidae: Diptera). Journal of Economic Entomology 116(5), 16711678. doi:10.1093/jee/toad092.CrossRefGoogle Scholar
Santos, VFD, Abeijon, LM, da Cruz Araújo, SH, Garcia, FRM and de Oliveira, EE (2023) The potential of plant-based biorational products for the Drosophila suzukii control: Current status, opportunities, and limitations. Neotropical Entomology 53(2), 236243. doi:10.1007/s13744-023-01119-0.CrossRefGoogle ScholarPubMed
Senthil‐Nathan, S (2018) Effect of methyl jasmonate (MeJA)‐induced defenses in rice against the rice leaf folder Cnaphalocrocis medinalis (Guenèe) (Lepidoptera: Pyralidae). Pest Management Science 75(2), 460465. doi:10.1002/ps.5139.CrossRefGoogle ScholarPubMed
Shrader, ME, Burrack, HJ and Pfeiffer, DG (2018) Drosophila suzukii (Diptera: Drosophilidae) oviposition and adult emergence in six wine grape varieties grown in Virginia. Journal of Economic Entomology 112(1), 139148. doi:10.1093/jee/toy305.CrossRefGoogle Scholar
Skendžić, S, Zovko, M, Živković, IP, Lešić, V and Lemić, D (2021) The impact of climate change on agricultural insect pests. Insects 12(5), 440. doi:10.3390/insects12050440.CrossRefGoogle ScholarPubMed
Tait, G, Park, K, Nieri, R, Crava, MC, Mermer, S, Clappa, E, Boyer, G, Dalton, DT, Carlin, S, Brewer, L, Walton, VM, Anfora, G and Rossi-Stacconi, MV (2020) Reproductive site selection: Evidence of an oviposition cue in a highly adaptive dipteran, Drosophila suzukii (Diptera: Drosophilidae). Environmental Entomology 49(2), 355363. doi:10.1093/ee/nvaa005.CrossRefGoogle Scholar
Van Driesche, RG and Murray, TJ, (2004) Overview of testing schemes and designs used to estimate host ranges. In Van Driesche, R.G. and Reardon, R. (eds.) Assessing Host Ranges for Parasitoids and Predators Used for Classical Biological Control: A Guide to Best Practice. United States Department of Agriculture Forest Health Technology Enterprise Team, Morgantown, West Virginia. FHTET-2004-03. 6889.Google Scholar
Wallingford, AK, Connelly, HL, Brind’Amour, GD, Boucher, MT, Mafra-Neto, A and Loeb, GM (2016) Field evaluation of an oviposition deterrent for management of spotted-wing drosophila, Drosophila suzukii, and potential nontarget effects. Journal of Economic Entomology 109(4), 17791784. doi:10.1093/jee/tow116.CrossRefGoogle ScholarPubMed
Walsh, DB, Bolda, MP, Goodhue, RE, Dreves, AJ, Lee, J, Bruck, DJ, Walton, VM, O’Neal, SD and Zalom, FG (2011) Drosophila suzukii (Diptera: Drosophilidae): Invasive pest of ripening soft fruit expanding its geographic range and damage potential. Journal of Integrated Pest Management 2(1), G1G7. doi:10.1603/ipm10010.CrossRefGoogle Scholar
Wang, J, Wu, D, Wang, Y and Xie, D (2019) Jasmonate action in plant defense against insects. Journal of Experimental Botany 70(13), 33913400. doi:10.1093/jxb/erz174.CrossRefGoogle Scholar
Wei, J, Wen, X and Tang, L (2017) Effect of methyl jasmonic acid on peach fruit ripening progress. Scientia Horticulturae 220, 206213. doi:10.1016/j.scienta.2017.03.004.CrossRefGoogle Scholar
Williams, L, Rodriguez-Saona, C and Del Conte, SCC (2017) Methyl jasmonate induction of cotton: A field test of the ‘attract and reward’ strategy of conservation biological control. Annals of Botany PLANTS 9(5), doi:10.1093/aobpla/plx032.Google Scholar
Xu, P, Choo, Y, De La Rosa, A and Leal, WS (2014) Mosquito odorant receptor for DEET and methyl jasmonate. Proceedings of the National Academy of Sciences of the United States of America. 111(46), 1659216597. doi:10.1073/pnas.1417244111.CrossRefGoogle ScholarPubMed
Yang, S, Cao, Q, Peng, K and Xie, J (2022) Jasmonic Acid-Treated cotton plant leaves impair larvae growth performance, activities of detoxification enzymes, and insect humoral immunity of cotton bollworm. Neotropical Entomology 51(4), 570582. doi:10.1007/s13744-022-00970-x.CrossRefGoogle ScholarPubMed
Yao, H and Tian, S (2005) Effects of a biocontrol agent and methyl jasmonate on postharvest diseases of peach fruit and the possible mechanisms involved. Journal of Applied Microbiology 98(4), 941950. doi:10.1111/j.1365-2672.2004.02531.x.CrossRefGoogle ScholarPubMed
Yoon, JS, (1985) Drosophilidae I: Drosophila melanogaster. In Singh, P and Moore, RF. (eds.), Handbook of Insect Rearing. Vol. II. Amsterdam, The Netherlands: Elsevier, 7584.Google Scholar
Zhan, H, Li, D, Dewer, Y, Niu, C, Li, F and Luo, C (2021) Characterization of odorant-binding proteins 69a and 76a in Drosophila suzukii and their ligand-binding properties. Heliyon 7(6), e06427. doi:10.1016/j.heliyon.2021.e06427.CrossRefGoogle Scholar
Zhan, X, Liu, Y, Liang, X, Wu, C, Liu, X, Shui, J, Zhang, Y, Wang, Y and Chen, Q (2022) Methyl jasmonate-treated pepper (Capsicum annuum L.) depresses performance and alters activities of protective, detoxification, and digestive enzymes of green peach aphid [Myzus persicae (Sulzer) (Hemiptera: Aphididae)]. Journal of Insect Science 22(6), 11. doi:10.1093/jisesa/ieac074.CrossRefGoogle ScholarPubMed
Zhang, Y, Xie, Y, Xue, J and Wang, X (2009) Attraction to the ladybeetle by the volatiles of persimmon trees induced with methyl jasmonate and Japanese wax scale attacking. Linye Kexue 45(1), 9096.Google Scholar
Supplementary material: File

Parichanon et al. supplementary material

Parichanon et al. supplementary material
Download Parichanon et al. supplementary material(File)
File 22.8 KB