Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-19T06:37:29.610Z Has data issue: false hasContentIssue false

Individualization and Electrical Characterization of SiGe Nanowires

Published online by Cambridge University Press:  11 January 2012

M. Monasterio
Affiliation:
Tecnología Electrónica, Universidad Politécnica de Madrid, E.T.S.I.T., 28040 Madrid, Spain
A. Rodríguez
Affiliation:
Tecnología Electrónica, Universidad Politécnica de Madrid, E.T.S.I.T., 28040 Madrid, Spain
T. Rodríguez
Affiliation:
Tecnología Electrónica, Universidad Politécnica de Madrid, E.T.S.I.T., 28040 Madrid, Spain
C. Ballesteros
Affiliation:
Física, Universidad Carlos III, 28911 Leganés (Madrid), Spain
Get access

Abstract

SiGe nanowires of different Ge atomic fractions up to 15% were grown and ex-situ n-type doped by diffusion from a solid source in contact with the sample. The phenomenon of dielectrophoresis was used to locate single nanowires between pairs of electrodes in order to carry out electrical measurements. The measured resistance of the as-grown nanowires is very high, but it decreases more than three orders of magnitude upon doping, indicating that the doping procedure used has been effective.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhang, X., Lew, K. K., Nimmatori, P., Redwing, J., Dickey, E.C.; Nano Lett. 7, 3241 (2007).Google Scholar
2. Vijayaraghavan, A., Blatt, S., Weissenberger, D., Oron-Carl, M., Hennrich, F., Gerthsen, D., Hahn, H., Krupke, R.. Nano Lett. 7, 1556 (2007).Google Scholar
3. Boote, J. J., Evans, S. D.. Nanotechnology 16, 1500 (2005).Google Scholar
4. Raychaudhuri, S., Dayeh, S., Wang, D., Yu, T.. Nano Lett. 9, 2260 (2009).Google Scholar
5. Jiang, K., Liu, W., Wan, L., Zhang, J.. Sensors and Actuators B 134, 79 (2008).Google Scholar
6. Marczak, M., Hourlier, D., Mélin, T., Adamowicz, L., Diesinger, H.. Appl. Phys. Lett. 96, 233502 (2010).Google Scholar
7. Qi, C., Goncher, G., Solanki, R., Jordan, J.. Nanotechnology 18, 075302 (2007).Google Scholar
8. Liu, Y., Chung, J.-H., Liu, W. K., Ruoff, R. S.. J. Phys. Chem. B 110, 14098 (2006).Google Scholar
9. Maijenburg, A. W., Maas, M. G., Rodijk, E. J. B., Ahmed, W., Kooij, E. S.. Carlen, E. T., Blank, D. H. A., ten Elshof, J. E.. Journal of Colloid and Interface Science 355, 486 (2011).Google Scholar
10. Monasterio, M., Rodríguez, A., Rodríguez, T., Ballesteros, C.. This Symposium.Google Scholar
11. Moselund, K. E., Ghoneim, H., Schmid, H., Björk, M. T., Lörtscher, E., Karg, S., Signorello, G., Webb, D., Tschudy, M., Beyeler, R., Riel, H.. Nanotechnology 21, 435202 (2010).Google Scholar
12. Ingole, S., Aella, P., Manandhar, P., Chikkannanavar, S. B., Akhadov, E. A., Smith, D. J., Picraux, S. T.. J. Appl. Phys. 103, 104302 (2008).Google Scholar
13. Desert Silicon, LLC. www.desertsilicon.com.Google Scholar
14. SSuprem3 1-D Process Simulation. www.silvaco.com.Google Scholar
15. Lu, W., Lieber, C. M.. J. Phys. D: Appl. Phys. 39, R387 (2006).Google Scholar
16. Cui, Y., Duan, X., Hu, J., Lieber, C. M.. J. Phys. Chem. B 104, 5214 (2000).Google Scholar