Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T14:18:00.325Z Has data issue: false hasContentIssue false

Layer-by-layer assembled transparent conductive graphene films for solar cells application

Published online by Cambridge University Press:  11 July 2012

Ryousuke Ishikawa
Affiliation:
Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, Tokyo 152-8552, Japan
Masashi Bando
Affiliation:
Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, Tokyo 152-8552, Japan
Yasuyoshi Kurokawa
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, Tokyo 152-8552, Japan
Adarsh Sandhu
Affiliation:
Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, Tokyo 152-8552, Japan Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
Makoto Konagai
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, Tokyo 152-8552, Japan Photovoltaics Research Center (PVREC), Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, Tokyo 152-8552, Japan
Get access

Abstract

The potential of chemically derived graphene as a solution-processable transparent conductive film has been explored. Synthesis of amine-functionalized graphene oxide was intended for its utilization in layer-by-layer assembly. Layer-by-layer assembly of graphene oxide was utilized to fabricate graphene based thin film in a scalable and highly reproducible way. It was found that optical transmittance and sheet resistance of the film decreases with an increase in number of LBL cycles in a reproducible way. The sheet resistance of LBL-assembled GO film improves by an order of magnitude at the same optical transparency due to more homogeneous coverage and better stacking of graphene flakes. Furthermore, we demonstrated the potential for a large-scale deposition of chemically derived graphene.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Konagai, M., Japanese Journal of Applied Physics 50(3), 030001 (2011).CrossRefGoogle Scholar
Granqvist, C. G., Solar Energy Materials and Solar Cells 91(17), 15291598 (2007).CrossRefGoogle Scholar
De, S. and Coleman, J. N., Acs Nano 4(5), 27132720 (2010).CrossRefGoogle Scholar
Eda, G., Fanchini, G. and Chhowalla, M., Nature Nanotechnology 3(5), 270274 (2008).CrossRefGoogle Scholar
Li, X. S., Zhu, Y. W., Cai, W. W., Borysiak, M., Han, B. Y., Chen, D., Piner, R. D., Colombo, L. and Ruoff, R. S., Nano Letters 9(12), 43594363 (2009).CrossRefGoogle Scholar
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V. and Firsov, A. A., Science 306 (5296), 666669 (2004).CrossRefGoogle Scholar
Geim, A. K. and Novoselov, K. S., Nature Materials 6(3), 183191 (2007).CrossRefGoogle Scholar
Loh, K. P., Lu, J., Yang, J. X., Wang, J. Z., Lim, A. L. and Wang, S., Acs Nano 3 (8), 23672375 (2009).Google Scholar
Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F. M., Sun, Z. Y., De, S., McGovern, I. T., Holland, B., Byrne, M., Gun’ko, Y. K., Boland, J. J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A. C. and Coleman, J. N., Nature Nanotechnology 3(9), 563568 (2008).CrossRefGoogle Scholar
Choucair, M., Thordarson, P. and Stride, J. A., Nature Nanotechnology 4(1), 3033 (2009).CrossRefGoogle Scholar
Hummers, W. S. and Offeman, R. E., Journal of the American Chemical Society 80(6), 13391339 (1958).CrossRefGoogle Scholar
Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. T. and Ruoff, R. S., Nature 442 (7100), 282286 (2006).CrossRefGoogle Scholar
Emtsev, K. V., Bostwick, A., Horn, K., Jobst, J., Kellogg, G. L., Ley, L., McChesney, J. L., Ohta, T., Reshanov, S. A., Rohrl, J., Rotenberg, E., Schmid, A. K., Waldmann, D., Weber, H. B. and Seyller, T., Nature Materials 8(3), 203207 (2009).CrossRefGoogle Scholar
Bae, S., Kim, H., Lee, Y., Xu, X. F., Park, J. S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H. R., Song, Y. I., Kim, Y. J., Kim, K. S., Ozyilmaz, B., Ahn, J. H., Hong, B. H. and Iijima, S., Nature Nanotechnology 5(8), 574578 (2010).CrossRefGoogle Scholar
Ishikawa, R., Bando, M., Morimoto, Y. and Sandhu, A., Nanoscale Research Letters 6(1), 111 (2010).CrossRefGoogle Scholar
Lee, S. W., Kim, B. S., Chen, S., Shao-Horn, Y. and Hammond, P. T., Journal of the American Chemical Society 131(2), 671679 (2009).CrossRefGoogle Scholar
Daniel, S., Rao, T. P., Rao, K. S., Rani, S. U., Naidu, G. R. K., Lee, H. Y. and Kawai, T., Sensors and Actuators B-Chemical 122(2), 672682 (2007).CrossRefGoogle Scholar
Banerjee, S. and Wong, S. S., Nano Letters 2(3), 195200 (2002).CrossRefGoogle Scholar
Fan, X. B., Peng, W. C., Li, Y., Li, X. Y., Wang, S. L., Zhang, G. L. and Zhang, F. B., Advanced Materials 20(23), 44904493 (2008).CrossRefGoogle Scholar
He, H. Y., Riedl, T., Lerf, A. and Klinowski, J., Journal of Physical Chemistry 100(51), 1995419958 (1996).CrossRefGoogle Scholar
Lerf, A., He, H. Y., Riedl, T., Forster, M. and Klinowski, J., Solid State Ionics 101, 857862 (1997).CrossRefGoogle Scholar
Eda, G., Lin, Y. Y., Mattevi, C., Yamaguchi, H., Chen, H. A., Chen, I. S., Chen, C. W. and Chhowalla, M., Advanced Materials 22(4), 505509 (2010).CrossRefGoogle Scholar
Dreyer, D. R., Park, S., Bielawski, C. W. and Ruoff, R. S., Chemical Society Reviews 39(1), 228240 (2010).CrossRefGoogle Scholar
Wang, X., Zhi, L. J. and Mullen, K., Nano Letters 8(1), 323327 (2008).CrossRefGoogle Scholar