Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T01:06:59.143Z Has data issue: false hasContentIssue false

Characteristics and Applications of Nanostructured Nitrides Synthesized by Vapor Phase Reactions

Published online by Cambridge University Press:  15 February 2011

Gerald Ziegenbalg
Affiliation:
TU Bergakademie Freiberg, Institute of Technical Chemistry, Leipziger Strasse 29, 09599 Freiberg, Germany
Carsten Pätzold
Affiliation:
TU Bergakademie Freiberg, Institute of Technical Chemistry, Leipziger Strasse 29, 09599 Freiberg, Germany
Ute Ŝingliar
Affiliation:
TU Bergakademie Freiberg, Institute of Technical Chemistry, Leipziger Strasse 29, 09599 Freiberg, Germany
Rico Berthold
Affiliation:
TU Bergakademie Freiberg, Institute of Technical Chemistry, Leipziger Strasse 29, 09599 Freiberg, Germany
Get access

Abstract

Gas phase ammonolysis of volatile metal chlorides at elevated temperatures is a favorable way to produce nitride or oxynitride nanopowders. Their composition as well as the physico-chemical properties is determined by reaction temperature, molar ratio of the reactants and the residence time of the gases in the reaction zone. Both single and multi component powders can be obtained. Typical particle sizes are in the range of 50 to 350 nm. The specific surface can reach values up to 300 m2/g. Microporous analysis revealed the presence of pores with a diameter between 0.6 and 0.7 nm in amorphous silicon nitride. The powders can be used, depending on the characteristics, as catalyst or basic catalyst support. The paper gives an overview about vapor phase synthesis of single and multi component nitrides as well as the use of amorphous silicon nitride as a basic catalyst support for dehydrogenation of propane.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Cadete Santos Aires, F. J.; Ramirez, S.; Garcia Cervantes, G.; Rogemond, E.; Bertolini, J. C.; Applied Catalysis, A: General (2003), 238(2), 289 Google Scholar
[2] Monnet, F., Schuurman, Y., Santos Aires, F. J. C., Bertolini, J.-C., Mirodatos, C.; Comptes Rendus de l'Academie des Sciences, Serie IIc: Chimie (2000), 3(7), 577 Google Scholar
[3] Hullmann, D., Wendt, G., Ziegenbalg, G. Chemie-Ingenieur-Technik (1999), 71(12), 1410 Google Scholar
[4] Methivier, C., Massardier, J., Bertolini, J. C.; Applied Catalysis, A: General (1999), 182(2)Google Scholar
[5] Lednor, P.W, Ruiter, R.; J. Chem. Soc. Chem. Commun. 1991, 22, 1625 Google Scholar
[6] The Chemistry of Transition Metal Carbides and Nitrides; Editor: Oyama, S. T., Blackie Academic & Professional; Glasgow, Scotland 1996 Google Scholar
[7] Bennett, C. A.; Neylon, M. K.; Kwon, H. H.; Choi, S.; Curry, K. E.; Thompson, L. T.; Mat. Res. Soc. Symp. Proc., 549 (1999) 45 Google Scholar
[8] Ramanathan, S., Oyama, S.T.; J. Phys. Chem., 1995, 99, 16365 Google Scholar
[9] Ziegenbalg, G.; Reaktionen, , Zwischenprodukte und Verfahren zur Herstellung von amorphen Si3N4-Pulvern durch Umsetzung von SiC14 mit NH3 in der Gasphase, Freiberger Forschungsheft 199, C-477Google Scholar
[10] Ziegenbalg, G., Focke, Th., Holldorf, H., Brink, R., Lange, H.; Journal of Materials Science 34 (1999)9, 2199 Google Scholar
[11] Hullmann, D., Wendt, G., Ŝingliar, U., Ziegenbalg, G.; Applied Catalysis A: General 225 (2002) 261 Google Scholar
[12] Pätzold, C.; Ph.D. Thesis, TU Bergakademie Freiberg, 2001 Google Scholar
[13] Ziegenbalg, G., Ŝingliar, U.; Chemical Vapor Deposition 2004, 10, 270274 Google Scholar
[14] Ŝingliar, U.; Ph.D. thesis, TU Bergakademie Freiberg, 2003 Google Scholar
[15] Hullmann, D.; Ph.D. thesis, Universität Leipzig, 2000 Google Scholar