Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T20:22:47.299Z Has data issue: false hasContentIssue false

Photoinduced Second Harmonic Generation in Optical Fibers: Materials and Mechanisms

Published online by Cambridge University Press:  15 February 2011

D. M. Krol
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA
J. R. Simpson
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA
D. J. DiGiovanni
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA
R. M. Atkins
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA
P. J. Lemaire
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA
K. T. Nelson
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA
Get access

Abstract

Permanent X(2) gratings can be written in doped silica fibers by coherent irradiation with light at ω and 2ω. The X(2) gratings give rise to phase-matched second harmonic generation (SHG), i.e. subsequent irradiation of the prepared fiber with light at ω results in an output at 2ω. The efficiency with which the gratings can be written depends on the nature and concentration of defect states induced by dopants in the, glass. We present results for fibers doped with Ge and rare earth ions and discuss the implications of our results for the various mechanisms that have been proposed to explain photoinduced SHG in fibers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vogel, E. M., Weber, M. J. and Krol, D. M., ”Nonlinear Optical Phenomena in Glass”, Phys. Chem. Glasses, in press.Google Scholar
2. Stolen, R. H., Nonlinear Waves in Solid State Physics, Boardman, A. D., Twardowski, T. and Bertolotti, M., eds. (Plenum, New York,1990)Google Scholar
3. Krol, D. M., ”Nonlinear Optical Effects and Permanent Photoinduced Changes in Glasses and-Optical Fibers”, Ceram. Trans. in press.Google Scholar
4. Russell, P. St. J. et al., SPIE Vol.1373, 126 (1990).Google Scholar
5. MacDonald, R. L. and Lawandy, N. M., J. Opt. Soc. Am. B8, 1307 (1991).Google Scholar
6. Krol, D. M. and Simpson, J. R., Opt. Lett. 16, 1650 (1991).10.1364/OL.16.001650Google Scholar
7. Driscoll, T. J., Lawandy, N. M., Killian, A., Rienhart, L. and Morse, T. F., Electron. Lett. 27, 2088 (1991).10.1049/el:19911293Google Scholar
8. Friebele, E. J. and Griscom, D. L., Mat. Res. Soc. Symp. Proc. 61, 319 (1986).10.1557/PROC-61-319Google Scholar
9. Kohketsu, M., Awazu, K., Kawazoe, H., Yamane, M., Jap. J. Appl. Phys. 28, 622 (1989).10.1143/JJAP.28.622Google Scholar
10. Krol, D. M., Atkins, R. M. and Lemaire, P. J., ”Photoinduced Second-Harmonic Generation and Luminescence of Defects in Ge-doped Silica Fibers”, International Workshop on Photoinduced Self–Organization in Optical Fibers, Quebec City, May 10–11, 1991, Proc. SPIE Vol.1516 (1991).Google Scholar
11. Osterberg, U. and Margulis, W., Opt. Lett. 11, 516 (1986).CrossRefGoogle Scholar