Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T17:26:48.043Z Has data issue: false hasContentIssue false

Morphocoenoclines, character combination, and environmental gradients: a case study using symbiont-bearing benthic foraminifera

Published online by Cambridge University Press:  08 April 2016

Johann Hohenegger*
Affiliation:
Institut für Paläontologie, Universität Wien, Althanstrasse 14, A-1090 Wien, Austria. E-mail: johann.hohenegger@univie.ac.at

Abstract

The species-characteristic combination of morphological characters that depend on an environmental gradient can be used to determine the frequency distribution of the species along the gradient. All functional characters of a phylogenetically closely related species group demonstrate overlapping intervals along an environmental gradient. The gradual change in character composition along the gradient is called a morphocoenocline. Based on transfer functions, a morphocoenocline can be used for gradient values estimation (proxies) in the historical or geological past, similar to a coenocline based on species (democoenocline).

Transforming the empirical frequency distributions of characters and character states along the gradient to probability distributions enables calculating a probability density function of any subset of characters of the morphocoenocline. Because a species is distinguished by a specific combination of characters that are functionally related to the gradient, the distribution of this species along the gradient can be estimated using the probability density functions of combined characters. Assuming “functional uniformitarianism” this estimation can be extended into the geologic past for all fossil species, as long as their functional characters are homologous or analogous to those found among Recent forms. When a morphocoenocline is based on a compound environmental gradient, such as depth, which represents a combination of single environmental factors, the gradient estimation reflects only a specific combination of single factors.

A morphocoenocline for test characters of symbiont-bearing benthic foraminifera from the West Pacific was established for water depth. This compound environmental gradient represents tropical open sea conditions at a slope where the water is highly transparent (low inorganic nutrients and sediment input). Depth distributions based on probability density functions were compared with empirical distributions to prove the accuracy of this method, and were used to estimate the depth distribution of other living species that had not been included in the determination of the morphocoenocline because they live in other regions. The method was also applied to fossil species that are closely related to Recent forms (Nummulites, Assilina from the Eocene) and to fossil species that are more distantly related to the living species (Orbitoides from the Upper Cretaceous).

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Batschelet, E. 1992. Introduction to mathematics for life scientists, 3d ed. Springer Study Edition, Berlin.Google Scholar
Bauch, D., Darling, K., Simstich, J., Bauch, H. A., Erlenkeuser, H., and Kroon, D. 2003. Palaeoceanographic implications of genetic variation in living North Atlantic Neogloboquadrina pachyderma . Nature 424:299302.CrossRefGoogle ScholarPubMed
Bellemo, S. 1974. Ultrastructures in Recent radial and granular foraminifera. Bulletin of the Geological Institute University Uppsala, new series 4:117122.Google Scholar
Birks, H. J. B. 1995. Quantitative palaeoenvironmental reconstructions. Pp. 161254 in Maddy, D. and Brew, J. S., eds. Statistical modelling of Quaternary science data. Technical guide 5. Quaternary Research Association, Cambridge, U.K. Google Scholar
Cox, C. B., and Moore, P. D. 1993. Biogeography: an ecological and evolutionary approach, 5th ed. Blackwell Scientific, Oxford.Google Scholar
Darling, K. F., Wade, Ch. M., Stewart, I. A., Kroon, D., Dingle, R., and Leigh Brown, A. J. 2000. Molecular evidence for genetic mixing of Arctic and Antarctic subpolar populations of planktonic foraminifers. Nature 405:4347.CrossRefGoogle ScholarPubMed
Digby, P. G. N., and Kempton, R. A. 1987. Multivariate analysis of ecological communities. Chapman and Hall, London.Google Scholar
Dodd, J. R., and Stanton, R. J. Jr. 1990. Paleoecology: concepts and applications, 2d ed. Wiley, New York.Google Scholar
Ericson, D. B. 1959. Coiling direction of Globigerina pachyderma as a climatic index. Science 130:219220.CrossRefGoogle ScholarPubMed
Gauch, H. G. 1982. Multivariate analysis in community ecology. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Gauch, H. G., and Whittaker, R. H. 1972. Coenocline simulation. Ecology 53:446451.CrossRefGoogle Scholar
Gudmundsson, G. 1994. Phylogeny, ontogeny and systematics of Recent Soritacea Ehrenberg 1839 (Foraminiferida). Micropaleontology 40:101155.CrossRefGoogle Scholar
Hallock, P. 1979. Trends in test shape with depth in large, symbiont-bearing foraminifera. Journal of Foraminiferal Research 9:6169.CrossRefGoogle Scholar
Hallock, P., and Hansen, H. J. 1979. Depth adaptation in Amphistegina: change in lamellar thickness. Bulletin of the Geological Society of Denmark 27:99104.CrossRefGoogle Scholar
Hallock, P., Forward, L. B., and Hansen, H. J. 1986. Influence of environment on the test shape of Amphistegina . Journal of Foraminiferal Research 16:224231.CrossRefGoogle Scholar
Hansen, H. J., and Dahlberg, P. 1979. Symbiotic algae in milioline foraminifera: CO2 uptake and shell adaptations. Bulletin of the Geological Society of Denmark 28:4755.CrossRefGoogle Scholar
Haynes, J. 1965. Symbiosis, wall structure and habitat in foraminifera. Contributions of the Cushman Foundation of Foraminiferal Research 16:4043.Google Scholar
Hohenegger, J. 1994. Distribution of living larger Foraminifera NW of Sesoko-Jima, Okinawa Japan. PSZNI Marine Ecology 15:291334.CrossRefGoogle Scholar
Hohenegger, J. 2000. Coenoclines of larger foraminifera. Micropaleontology 46(Suppl. 1):127151.Google Scholar
Hohenegger, J. 2002. Inferences on sediment production and transport at carbonate beaches using larger foraminifera. Pp. 112125 in Magoon, O. T., Robbins, L. L., and Ewing, L., eds. Carbonate beaches 2000, Conference proceedings, ASCE American Society of Civil Engineers, Reston, Va. CrossRefGoogle Scholar
Hohenegger, J. 2004. Depth coenoclines and environmental considerations of Western Pacific larger foraminifera. Journal of Foraminiferal Research 34:933.CrossRefGoogle Scholar
Hohenegger, J., and Baal, Ch. 2003. Gehäusebau bei Foraminiferen. Pp. 122123 in Hofrichter, R., ed. Das Mittelmeer: Fauna, Flora, Ökologie. II/1. Spectrum, Heidelberg.Google Scholar
Hohenegger, J., Yordanova, E., Nakano, Y., and Tatzreiter, F. 1999. Habitats of larger foraminifera on the upper reef slope of Sesoko Island, Okinawa, Japan. Marine Micropaleontology 36:109168.CrossRefGoogle Scholar
Hohenegger, J., Yordanova, E., and Hatta, A. 2000. Remarks on West Pacific Nummulitidae (Foraminifera). Journal of Foraminiferal Research 30:328.CrossRefGoogle Scholar
Holzmann, M., Hohenegger, J., and Pawlowski, J. 2003. Molecular data reveal parallel evolution in nummulitid foraminifera. Journal Foraminiferal Research 33:815.CrossRefGoogle Scholar
Hottinger, L. 1983. Processes determining the distribution of larger Foraminifera in space and time. Utrecht Micropaleontological Bulletin 30:239253.Google Scholar
Hottinger, L. 1997. Shallow benthic foraminiferal assemblages as signals for depth of their deposition and their limitations. Bulletin de la Société Géologique de France 168:491505.Google Scholar
Hottinger, L. 2000. Functional morphology of benthic foraminiferal shells, envelopes of cells beyond measure. Micropaleontology 46(Suppl.1):5786.Google Scholar
Hottinger, L., and Leutenegger, S. 1980. The structure of calcarinid foraminifera. Schweizerische Paläontologische Abhandlungen 101:115151.Google Scholar
Hottinger, L., Halicz, E., and Reiss, Z. 1993. Recent Foraminiferida from the Gulf of Aqaba, Red Sea. Slovenska Akademia Znanosti in Umetnosti, Razred za Naravoslovne Vede, dela 33, Paleontološki Inštitut Ivana Rakovca, series 3. Ljubljana.Google Scholar
Hutchinson, G. E. 1965. The ecological theater and the evolutionary play. Yale University Press, New Haven, Conn.Google Scholar
Huxley, J. S. 1938. Clines: an auxiliary taxonomic principle. Nature 142:219220.CrossRefGoogle Scholar
Huxley, J. S. 1939. Clines: an auxiliary method in taxonomy. Bijdragen tot de Dierkunde 27:491520.CrossRefGoogle Scholar
Johnson, N. L., and Kotz, S. 1970. Continuous univariate distributions, Vol. 1. Houghton Mifflin, Boston.Google Scholar
Keddy, P. A. 1991. Working with heterogeneity: an operator's guide to environmental gradients. Pp. 181201 in Kolasa, J. and Pickett, S. T. A., eds. Ecological heterogeneity. Springer, New York.CrossRefGoogle Scholar
Koba, M. 1978. Distribution and environment of Recent Cycloclypeus . Science Reports Tohoku University, 7th series (Geography) 28:283311.Google Scholar
Krebs, Ch. J. 1989. Ecological methodology. Harper and Row, New York.Google Scholar
Larsen, A. R. 1976. Studies of Recent Amphistegina, taxonomy and some ecological aspects. Israel Journal of Earth Science 25:126.Google Scholar
Larsen, A. R., and Drooger, C. W. 1977. Relative thickness of the test in the Amphistegina species of the Gulf of Elat. Utrecht Micropaleontological Bulletin 15:225239.Google Scholar
Legendre, P., and Legendre, L. 1998. Numerical ecology, 2d ed. Elsevier, Amsterdam.Google Scholar
Li, Q., and Wang, P. 1985. Distribution of larger foraminifera in the northwestern part of the South China Sea. Pp. 176195 in Wang, P., ed. Marine micropaleontology of China. China Ocean Press, Beijing, and Springer, Berlin.Google Scholar
Murray, J. W. 1991. Ecology and palaeoecology of benthic foraminifera. Longman, Harlow, U.K. Google Scholar
Pawlowski, J., Holzmann, M., Berney, C., Fahrni, J., Gooday, A. J., Cedhagen, T., Habura, A., and Browser, S. S. 2003. The evolution of early Foraminifera. Proceedings of the National Academy of Sciences USA 100:1149411498.CrossRefGoogle ScholarPubMed
Pecheux, M. J.-F. 1995. Ecomorphology of a recent large foraminifer, Operculina ammonoides . Geobios 28:529566.CrossRefGoogle Scholar
Pfanzagl, J. 1973. Theory of measurement, 2d ed. Physica, Würzburg.Google Scholar
Poston, T., and Stewart, I. N. 1981. Catastrophe theory and its application. Pitman, London.Google Scholar
Renema, W. 2003. Larger Foraminifera on reefs around Bali (Indonesia). Zoologische Verhandelingen Leiden 345:337366.Google Scholar
Schaub, H. 1981. Nummulites et Assilines de la Téthys paléogène: taxonomie, phylogenèse et biostratigraphie. Schweizerische Paläontologische Abhandlungen 104:1236, 105/106.Google Scholar
Simpson, G. G. 1961. Principles of animal taxonomy. Columbia University Press, New York.CrossRefGoogle Scholar
Sneath, P. H. A., and Sokal, R. R. 1973. Numerical taxonomy. W. H. Freeman, San Francisco.Google Scholar
van Gorsel, J. T. 1978. Late Cretaceous orbitoidal foraminifera. Pp. 1120 in Hedley, R. H. and Adams, C. G., eds. Foraminifera, Vol. 3. Academic Press, London.Google Scholar
Whittaker, R. H. 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs 30:279338.CrossRefGoogle Scholar
Whittaker, R. H. 1967. Gradient analysis of vegetation. Biological Review 42:207264.CrossRefGoogle ScholarPubMed
Wolpert, L. 1969. Positional information and the spatial pattern of cellular differentiation. Journal of Theoretical Biology 25:147.CrossRefGoogle ScholarPubMed
Yordanova, E. K., and Hohenegger, J. 2002. Taphonomy of largerforaminifera: relationships between living individuals and empty tests on flat reef slopes (Sesoko Island, Japan). Facies 46:169204.CrossRefGoogle Scholar
Yordanova, E. K., and Hohenegger, J. 2004. Morphoclines of living operculinid foraminifera based on quantitative characters. Micropaleontology 50:149177.CrossRefGoogle Scholar
Zar, J. H. 1999. Biostatistical analysis, 4th ed. Prentice Hall, Upper Saddle River, N.J. Google Scholar