Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T08:12:19.421Z Has data issue: false hasContentIssue false

Intercalation of Li into Single Crystals of MoS2

Published online by Cambridge University Press:  22 February 2011

C. A. Papageorgopoulos
Affiliation:
Clark Atlanta University, Dept. of Physics and Center for Theoretical Studies of Physical Systems, Atlanta Ga
W. Jaegermann
Affiliation:
Hahn-Meitner- Institut, Abt. Solare Energetik, Berlin 39, Germany
Get access

Abstract

In this paper we study in situ the intercalation of Li across and along the van der Waals planes of MoS2 single crystals. Li is intercalated according to the band model. The intercalation reaction is inhibited by a Li-S interaction. This interaction is negligible when Li is deposited along the van der Waals planes. The dominance of the intercalation reaction of Li into MoS2 is dependent on the flux of the deposited Li and the substrate temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Wilson, J. A. and Yoffe, A. D., Adg. Phys. 18, 193 (1969).Google Scholar
[2] Balchin, A. A.. Levy, F. (ed.) Crystallography and Crystal Chemistry of Materials with Layered Structures, D. Reidel, Dordrecht (1976)Google Scholar
[3] Hulliger, F. in Levy, F. (ed.) Structural Chemistry in Layer Type Phases, D. Reidel, Dordrecht (1976)Google Scholar
[4] Papageorgopoulos, C. A., Surface Phys., 75, 17 (1978).Google Scholar
[5] Marseglia, E. A., International Review in Physics Chemistry, 177 (1983)Google Scholar
[6] Friend, R. H. and Yoffe, A. D., Advances in Physics, 36, 1 (1987)Google Scholar
[7] Whittinghan, W. S. and Jacobsen, A. J., Eds, Intercalation Chemistry, Academic Press, New York (1982)Google Scholar
[8] Levy, F. A.(ed.) in: Intercalated Layer Materials. D.Reidel Dordrecht, (1977)Google Scholar
[9] Rouxel, J., Physica, 99B,3 (1980)Google Scholar
[10] Dresselhause, (ed.) Intercalation in Layered Materials NATO ASI Series B 148. Plenum Press. New York and London (1986).Google Scholar
[11] Friend, R. H. and Yoffe, A. d. Adv. Phys, 36, 1(1987)Google Scholar
[12] Mulhern, Peter J., Can. J. Phys. 67, 1049 (1989).Google Scholar
[13] Py, M.A. and Haering, R. R., Can. J. Phys, 61, 76 (1983).Google Scholar
[14] Kennou, S., Ladas, S. and Papageorgopoulos, C. A., Surface Sci., 152/153, 1213 (1985)Google Scholar
[15] Schellenberger, A.. Schlaf, R., Pettenkofer, C. and Jaegermann, W., Phys. Rev. B,56, 3538 (1992).Google Scholar
[16] Papageorgopoulos, C. A., Kamaratos, M., Papageorgopoulos, Aris, Schellenberger, A., Holub-Krappe, E., Pettenkofer, C. and Jaegermann, W., Surf. Sci., 275, 314(1992)Google Scholar
[17] XPS manual of Perkin Elmer Co.Google Scholar
[18] Somoano, R. B., Hadek, V. J. and Rembaum, A., J. Chem Phys., 58, 697 (1973).Google Scholar
[19] Besenhard, J. O., Meyer, H. and Schollhorn, R., Z. Naturforch B. Anorg. Chem Org. Chem., 31 B, 907 (1976)Google Scholar
[20] Whittingham, M.S., Prog. Solid State Commun., 12 51(1978)Google Scholar
[21] Chianelli, R. R., Prestridges, E. B. Pecovard, T. A. and Neue, J. P. De, Science, 203, 1105 (1979)Google Scholar
[22] Whittingham, M. S. and Gamble, F. R., Mat. Res. Bull. 10, 363 (1985)Google Scholar