Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T19:38:21.422Z Has data issue: false hasContentIssue false

Four color stacked white organic light-emitting diodes utilizing the concept of triplet harvesting

Published online by Cambridge University Press:  14 January 2011

Th. C. Rosenow*
Affiliation:
Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-StraBe 1, Dresden, Germany; E-mail: Thomas.Rosenow@gmx.de
S. Olthof
Affiliation:
Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-StraBe 1, Dresden, Germany; E-mail: Selina.Olthof@iapp.de
S. Reineke
Affiliation:
Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-StraBe 1, Dresden, Germany; E-mail: Sebastian.Reineke@iapp.de
B. Lüssem
Affiliation:
Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-StraBe 1, Dresden, Germany; E-mail: Bjoern.Luessem@iapp.de
K. Leo
Affiliation:
Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-StraBe 1, Dresden, Germany; E-mail: Karl.Leo@iapp.de
Get access

Abstract

Organic light-emitting diodes (OLEDs) are developing into a competitive alternative to conventional light sources. Nevertheless, OLEDs need further improvement in terms of efficiency and color rendering for lighting applications. Fluorescent blue emitters allow deep blue emission and high stability, while phosphorescent blue emitter still suffer from insufficient stability. The concept of triplet harvesting is the key for achieving internal quantum efficiencies up to 100 % and simultaneously benefiting from the advantages of fluorescent blue emitters. Here, we present a stacked OLED consisting of two units comprising four different emitters in total. The first unit takes advantage of the concept of triplet harvesting and combines the light emission of a fluorescent blue and a phosphorescent red emitter. The second unit emits light from a single emission layer consisting of a matrix doped with phosphorescent green and yellow emitters. With this approach, we reach white color coordinates close to the standard illuminant A and a color rendering index of above 75. The presented devices are characterized by high luminous efficacies of above 30 lm/W on standard glass substrates without outcoupling enhancement.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Reineke, S., Lindner, F., Schwartz, G., Seidler, N., Walzer, K., Lüssem, B., and Leo, K., “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459, 234 (2009).Google Scholar
[2] Nakayama, T., Hiyama, K., Furukawa, K., and Ohtani, H., “Development of phosphorescent white OLED with extremely high power efficiency and long lifetime,” SID07 Dig., 1018 (2006).Google Scholar
[3] Lee, J.-I., Chu, H. Y., Yang, Y. S., Do, L.-M., Chung, S. M., Park, S.-H. K., and Hwang, C.-S., “Harvest of triplet excitons in fluorescence emission layer based on a wide band gap host of TcTa for efficient white organic light emitting diodes,” Proc. SPIE 6655, 66550I (2007).Google Scholar
[4] Schwartz, G., Reineke, S., Rosenow, T. C., Walzer, K., and Leo, K., “Triplet harvesting in hybrid white organic light-emitting diodes,” Adv. Func. Mater. 19, 1 (2009).Google Scholar
[5] Schwartz, G., Reineke, S., Walzer, K., and Leo, K., “Reduced efficiency roll-off in high-efficiency hybrid white organic light-emitting diodes,” Appl. Phys. Lett. 92, 05331 (2008).Google Scholar
[6] Liao, L. S., Klubek, K. P., and Tang, C. W., “High-efficiency tandem organic light-emitting diodes,” Appl. Phys. Lett. 84, 167 (2004).Google Scholar
[7] Kanno, H., Hamada, Y., Nishimura, K., Okumoto, K., Saito, N., Ishida, H., Takahashi, H., Shibata, K., and Mameno, K., “High efficiency stacked organic light-emitting diodes employing Li2O as a connecting layer,” Jap. J. Appl. Phys. 45, 9219 (2006).Google Scholar
[8] Baldo, M. A., Adachi, C., and Forrest, S. R., “Transient analysis of organic electrophosphorescence. II. transient analysis of triplet-triplet annihilation,” Phys. Rev. B 62, 10967 (2000).Google Scholar
[9] He, G., Pfeiffer, M., Leo, K., Hofmann, M., Birnstock, J., Pudzich, R., and Salbeck, J., “High-efficiency and lowvoltage p-i-n electrophosphorescent organic light-emitting diodes with double-emission layers,” Appl. Phys. Lett. 85, 3911 (2004).Google Scholar
[10] CIE, [Commission internationale de l’èclairage proceedings 1924] , Cambridge University Press, Cambridge (1926).Google Scholar
[11] Sun, Y., Giebink, N. C., Kanno, H., Ma, B., Thompson, M. E., and Forrest, S. R., “Management of singlet and triplet excitons for efficient white organic light-emitting devices,” Nature 440, 04645 (2006).Google Scholar
[12] Kondakova, M. E., Deaton, J. C., Pawlik, T. D., Giesen, D. J., Kondakov, D. Y., Young, R. H., Royster, T. L., Comfort, D. L., and Shore, J. D., “Highly efficient fluorescent-phosphorescent triplet-harvesting hybrid organic light-emitting diodes,” J. Appl. Phys. 107, 014515 (2010).Google Scholar