Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T14:34:48.671Z Has data issue: false hasContentIssue false

Applications of First Principles Theory to Inorganic Radiation Detection Materials

Published online by Cambridge University Press:  01 February 2011

David Joseph Singh
Affiliation:
singhdj@ornl.gov, Oak Ridge National Laboratory, Materials Science and Technology Div., 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6114, United States, 865-241-3716
H. Takenaka
Affiliation:
takenakah@ornl.gov, Oak Ridge National Laboratory, Materials Science and Technology Division and Center for Radiation Detection Materials and Systems, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6114, United States
G. E. Jellison Jr
Affiliation:
jellisonge@ornl.gov, Oak Ridge National Laboratory, Materials Science and Technology Division and Center for Radiation Detection Materials and Systems, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6114, United States
Lynn A. Boatner
Affiliation:
boatnerla@ornl.gov, Oak Ridge National Laboratory, Materials Science and Technology Division and Center for Radiation Detection Materials and Systems, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6114, United States
Get access

Abstract

Applications of first principles methods to understand properties of several known and potential scintillators for radiation detection are described. These include results for rare earth and Pb-based phosphates, rare-earth trihalides, ZnO, perovskites and tungstates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Derenzo, S.E. and Weber, M.J., Nucl. Inst. Meth. Phys. Res. A 422, 111 (1999).10.1016/S0168-9002(99)01084-0Google Scholar
2. Abraham, Y., Holzwarth, N.A.W., and Williams, R.T., Phys. Rev. B 62, 1733 (2000).Google Scholar
3. Klintenberg, M., Derenzo, S.E., and Weber, M.J., Nucl. Inst. Meth. Phys. Res. A 486, 298 (2002).Google Scholar
4. Singh, D.J., Jellison, G.E. Jr, and Boatner, L.A., Phys. Rev. B 74, 155126 (2006).Google Scholar
5. Stephan, M., Zachau, M., Groting, M., Karplak, O., Eyert, V., Mishra, K.C., and Schmidt, P.C., J. Lumin. 114, 255 (2005).Google Scholar
6. Lordi, V., Aberg, D., Erhart, P., and Wu, K.J., Proc. SPIE 6706, 67060O–1 (2007).10.1117/12.739117Google Scholar
7. Singh, D.J. and Nordstrom, L., Planewaves Pseudopotentials and the LAPW Method, 2nd Edition (Springer, Berlin, 2006).Google Scholar
8. Suewattana, M., Singh, D.J. and Fornari, M., Phys. Rev. B 75, 172105 (2007).10.1103/PhysRevB.75.172105Google Scholar
9. Johannes, M.D. and Singh, D.J., Phys. Rev. B 71, 212101 (2005).Google Scholar
10. Sales, B.C. and Boatner, L.A., Mater. Lett. 2, 301 (1984).Google Scholar
11. Krupke, W.F., Shinn, M.D., Kirchoff, T.A., Finch, C.B., and Boatner, L.A., Appl. Phys. Lett. 51, 2186 (1987).Google Scholar
12. Makhov, V.N., Kirikova, N.Y., Kirm, M., Krupa, J.C., Liblic, P., Lushchik, A., Luschik, C., Negodin, E., and Zimmerer, G., Nucl. Inst. Meth. Phys. Res. A 486, 437 (2002).Google Scholar
13. Wisniewski, D., Tavernier, S., Dorenbos, P., Wisnewska, M., Wojtowicz, A.J., Bruyndonckx, P., Loef, E. van, Eijk, C.W.E. van, and Boatner, L.A., IEEE Trans. Nucl. Sci. 49, 937 (2002).10.1109/TNS.2002.1039593Google Scholar
14. Kraemer, K., Schleid, T., Schulze, M., Urland, W., and Meyer, G., Anorg, Z.. Chem 575, 61 (1989).Google Scholar
15. Loef, E.V.D. van, Dorenbos, P., Eijk, C.W.E. van, Kramer, K., and Gudel, H.U., Appl. Phys. Lett. 79, 1573 (2001).Google Scholar
16. Shannon, R.D., Acta Cryst. A32, 751 (1976).10.1107/S0567739476001551Google Scholar
17. Lecoq, P. et al. , Nucl. Inst. Meth. Phys. Res. A 365, 291 (1995).Google Scholar
18. Lecoq, P., Nucl. Inst. Meth. Phys. Res. A 537, 15 (2005).Google Scholar
19. Zachariasen, W.H. and Plettinger, H.A., Acta Cryst. 14, 229 (1961).10.1107/S0365110X61000772Google Scholar
20. Chipaux, R., Andre, G., and Cousson, A., J. Alloys Comp. 325, 91 (2001).Google Scholar
21. Takenaka, H., and Singh, D.J., Phys. Rev. B 75, 241102 (2007).Google Scholar
22. Singh, D.J., Phys. Rev. B 76, 214115 (2007).Google Scholar
23. Lehmann, W., Solid-State Electron. 9, 1107 (1966).Google Scholar
24. Lucky, D., Nucl. Inst. Meth. 62, 119 (1968).Google Scholar
25. Cooper, J.C., Koltick, D.S., Mihalczo, J.T., and Neal, J.S., Nucl. Inst. Meth. Phys. Res. A 505, 498 (2003).Google Scholar
26. Neal, J.S., Boatner, L.A., Giles, N.C., Haliburton, L.E., Derenzo, S.E., and BourretCourchesne, E.D., Nucl. Inst. Meth. Phys. Res. A 568, 803 (2006).Google Scholar
27. Janotti, A. and Van de Walle, C.G., Nat. Matter. 6, 44 (2007).Google Scholar
28. Weber, M.J., J. Appl. Phys. 44, 3205 (1973).Google Scholar
29. Baryshevsky, V.G., Korzhik, M.V., Minkov, B.I., Smimova, S.A., Fyodorov, A.A., Dorenbos, P., and Eijk, C.W.E. van, J. Phys. Condens. Matter 5, 7893 (1993).10.1088/0953-8984/5/42/010Google Scholar
30. Lempicki, A., Randles, M.H., Wisniewski, D., Balcerzyk, M., Brecher, C., and Wojtowicz, A.J., IEEE Trans. Nucl. Sci. NS–42, 280 (1995).Google Scholar
31. Kapusta, M., Balcerzyk, M., Moszynski, M., and Pawelke, J., Nucl. Inst. Meth. A 421, 610 (1999).Google Scholar
32. Mengesha, W., Taulbee, T.D., Rooney, B.D., and Valentine, J.D., IEEE Trans. Nucl. Sci. NS–45, 456 (1998).Google Scholar
33. Kukja, M.M., J. Phys. Condens. Matter 12, 2953 (2000).Google Scholar
34. Stanek, C.R., Levy, M.R., McClellan, K.J., Uberuaga, B.P., and Grimes, R.W., Phys. Stat. Sol. (b) 242, R113 (2005).Google Scholar
35. Stanek, C.R., McClellan, K.J., Levy, M.R., and Grimes, R.W., J. Appl. Phys. 99, 113518 (2006).Google Scholar