Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T22:23:37.665Z Has data issue: false hasContentIssue false

Injection and charge transport in polyfluorene polymers

Published online by Cambridge University Press:  01 February 2011

Dmytro Poplavskyy
Affiliation:
Blackett Laboratory and Centre for Electronic Materials and Devices, Imperial College, Prince Consort Road, SW7 2BZ, London, United Kingdom
Theo Kreouzis
Affiliation:
Blackett Laboratory and Centre for Electronic Materials and Devices, Imperial College, Prince Consort Road, SW7 2BZ, London, United Kingdom
Alasdair Campbell
Affiliation:
Blackett Laboratory and Centre for Electronic Materials and Devices, Imperial College, Prince Consort Road, SW7 2BZ, London, United Kingdom
Jenny Nelson
Affiliation:
Blackett Laboratory and Centre for Electronic Materials and Devices, Imperial College, Prince Consort Road, SW7 2BZ, London, United Kingdom
Donal Bradley
Affiliation:
Blackett Laboratory and Centre for Electronic Materials and Devices, Imperial College, Prince Consort Road, SW7 2BZ, London, United Kingdom
Get access

Abstract

An overview of recent results concerning the injection and transport of holes in a range of conjugated fluorene polymers, provided by the Dow Chemical Company, is presented.

Time-of-flight measurements in poly(9,9-dioctylfluorene) (PFO) are performed in a range of electric fields and temperatures (200-415 K). It is found that annealing at 380 K results in an irreversible increase of the hole mobility by one order of magnitude. Analysis of the TOF data within the Gaussian disorder model of Bassler and coworkers shows that this effect mainly contributes to the mobility prefactor 0, which grows from 2.3x10-2 to 2.6x10-1 cm2/Vs after annealing, while the disorder parameters σ and Σ increase only slightly.

Dark-injection transient measurements are performed in poly(9,9-dioctylfluorene-co-bis-N,N'-(4-methoxyphenyl)-bis-N,N'-phenyl-1,4-phenylenediamine) (PFMO) and poly(9,9-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-1,4-phenylenediamine) (PFB) polymers for the range of electric fields and in a wide range of sample thicknesses. The lowest studied thickness (0.22 μm) for PFB is much closer to typical device thicknesses (≤0.1 μm) than the thicknesses (∼1 μm) required for TOF measurements. It is shown that there are no significant differences in hole transport across the range of thicknesses from 0.22 μm to 1.1 μm indicating that for this material TOF technique can be a reliable tool to characterise materials for device operation. There is found to be an influence on stability of the metal counter-electrode used to perform dark-injection measurements. Specifically Ag and Au are found to give less stable structures than Al.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Burroughes, J. H. Bradley, D. D. C. Brown, A. R. Marks, R. N. Mackay, K. D. Friend, R. H. Burn, P. L. Holmes, A. B. Nature 347, 539 (1990)Google Scholar
2. Grice, A. W. Bradley, D. D. C. Bernius, M. T. Inbasekaran, M. Wu, W. W. and Woo, E. P. Appl. Phys. Lett. 73, 629 (1998)Google Scholar
3. Fletcher, R. B. Lidzey, D. G. Bradley, D. D. C. Bernius, M. T. and Walker, S. Appl. Phys. Lett. 77, 1262 (2000)Google Scholar
4. Wilkinson, C. I. Lidzey, D. G. Palilis, L. C. Fletcher, R. B. Martin, S. J. Wang, X. H. and Bradley, D. D. C. Appl. Phys. Lett. 79, 171 (2001)Google Scholar
5. Redecker, M. Bradley, D. D. C. Inbasekaran, M. Woo, E. P. Appl. Phys. Lett. 73, 1565 (1998).Google Scholar
6. Redecker, M. Bradley, D. D. C. Inbasekaran, M. Wu, W. W. Woo, E. P. Adv. Mater. 11, 241 (1999).Google Scholar
7. Giebeler, C. Antoniadis, H. Bradley, D. D. C. Shirota, Y. Appl. Phys. Lett. 72, 2448 (1998)Google Scholar
8. Kim, J. S. Granstrom, M. Friend, R. H. Johansson, N. Salaneck, W. R. Daik, R. Feast, W. J. Cacialli, F., J. Appl. Phys. 84, 6859 (1998)Google Scholar
9. Lampert, M. A. and Mark, P. Current injection in solids (Academic, New York, 1970).Google Scholar
10. Abkowitz, M. and Pai, D. M. Phil. Mag. B 53(3), 193216 (1986).Google Scholar
11. Staudigel, J. Stossel, M. Steuber, F. and Simmerer, J. Appl. Phys. Lett. 75(2), 217 (1999).Google Scholar
12. Scott, J. C. Ramos, S. and Malliaras, G. G. J. Imaging Sci. Technol. 43(3), 234 (1999).Google Scholar
13. Murgatroyd, P. N. J. Phys. D: Appl. Phys. 3, 151 (1970)Google Scholar
14. Blom, P. W. M. Jong, M. de, Munster, M. G. van, Phys. Rev. B 55, R656 (1997).Google Scholar
15. Malliaras, G. G. Salem, J. R. Brock, P. J. and Scott, C. Phys. Rev. B 58, R13411 (1998).Google Scholar
16. Martens, H. C. F. Blom, P. W. M. Schoo, H. F. M. Phys. Rev. B 61, 7489 (2000)Google Scholar
17. Campbell, A. J. Bradley, D. D. C. Antoniadis, H. J. Appl. Phys. 89, 3343 (2001)Google Scholar
18. Bässler, H., Phys. Stat. Sol. (b) 175, 15 (1993)Google Scholar
19. Bässler, H., Borsenberger, P. M. Chem. Phys. 177, 763 (1994)Google Scholar
20. Borsenberger, P. M. and Schein, L. B. J. Phys. Chem. 98, 233 (1994)Google Scholar
21. Jankowiak, R. Rockwitz, K. D. and Bässler, H., J. Phys. Chem. 87, 552 (1983)Google Scholar
22. Borsenberger, P. M. Pautmeier, L. T. and Bässler, H., Phys. Rev. B 48, 3066 (1993)Google Scholar
23. Campbell, A. J. Bradley, D. D. C. Antoniadis, H. Inbasekaran, M. Wu, W. W. Woo, E. P. Appl. Phys. Lett. 76, 1734 (2000)Google Scholar
24. Brown, T. M. Kim, J. S. Friend, R. H. Cacialli, F. Daik, R. and Feast, W. J. Appl. Phys. Lett. 75, 1679 (1999)Google Scholar
25. Kugler, T. Salaneck, W. R. Rost, H. Holmes, A. B. Chem. Phys. Lett. 310, 391 (1999)Google Scholar
26. Poplavskyy, D. Nelson, J. to be published.Google Scholar
27. Many, A. and Rakavy, G. Phys. Rev. 126(6), 1980 (1962).Google Scholar
28. Greenham, N. C. and Friend, R. Semiconductor Device Physics of Conjugated Polymers, in Solid State Physics (Ehrenreich, H. and Spaepen, F. eds.), Vol. 49, Academic Press, New York (1995).Google Scholar
29. Ioannidis, A. Facci, J. S. Abkowitz, M. A. J. Appl. Phys. 84, 1439 (1998)Google Scholar