Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-17T05:52:00.846Z Has data issue: false hasContentIssue false

Fluorescence-Detected Linear Dichroism of Wood Cell Walls in Juvenile Serbian Spruce: Estimation of Compression Wood Severity

Published online by Cambridge University Press:  09 February 2016

Aleksandar Savić
Affiliation:
Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia Laboratoire de Spectrochimie Infrarouge et Raman—UMR 8516, Université de Lille, Sciences et Technologies, 59655 Villeneuve d’Ascq Cedex; France
Aleksandra Mitrović
Affiliation:
Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia
Lloyd Donaldson
Affiliation:
Scion, Private Bag 3020, Rotorua 3010, New Zealand
Jasna Simonović Radosavljević
Affiliation:
Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia
Jelena Bogdanović Pristov
Affiliation:
Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia
Gabor Steinbach
Affiliation:
Institute of Plant Biology, Biological Research Center, H-6701 Szeged, Hungary Institute of Microbiology, CAS, Centrum Algatech, 379 01 Třeboň, Czech Republic
Győző Garab
Affiliation:
Institute of Plant Biology, Biological Research Center, H-6701 Szeged, Hungary
Ksenija Radotić*
Affiliation:
Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia
*
*Corresponding author.xenia@imsi.rs
Get access

Abstract

Fluorescence-detected linear dichroism (FDLD) microscopy provides observation of structural order in a microscopic sample and its expression in numerical terms, enabling both quantitative and qualitative comparison among different samples. We applied FDLD microscopy to compare the distribution and alignment of cellulose fibrils in cell walls of compression wood (CW) and normal wood (NW) on stem cross-sections of juvenile Picea omorika trees. Our data indicate a decrease in cellulose fibril order in CW compared with NW. Radial and tangential walls differ considerably in both NW and CW. In radial walls, cellulose fibril order shows a gradual decrease from NW to severe CW, in line with the increase in CW severity. This indicates that FDLD analysis of cellulose fibril order in radial cell walls is a valuable method for estimation of CW severity.

Type
Biological Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altaner, C.M., Tokareva, E.N., Wong, J.C.T., Adrian, I., Hapca, A.I., McLean, J.P. & Jarvis, M.C. (2009). Measuring compression wood severity in spruce. Wood Sci Technol 43, 279290.Google Scholar
Anagnost, S.E., Mark, R.E. & Hanna, R.B. (2005). S2 orientation of microfibrils in softwood tracheids and hardwood fibres. IAWA J 26, 325338.Google Scholar
Barnet, J.R. & Bonham, V.A. (2004). Cellulose microfibril angle in the cell wall of wood fibres. Biol Rev 79, 461472.Google Scholar
Chen, Q.-M., Hu, Z., Chang, H.-M. & Li, B. (2007). Micro analytical methods for determination of compression wood content in loblolly pine. J Wood Chem Technol 27, 169178.Google Scholar
Donaldson, L. (2008). Microfibril angle: Measurement, variation and relationships—a review. IAWA J 29, 345386.CrossRefGoogle Scholar
Donaldson, L.A., Grace, J.C. & Downes, G. (2004). Within tree variation in anatomical properties of compression wood in radiata pine. IAWA J 25, 253271.CrossRefGoogle Scholar
Donaldson, L.A., Radotić, K., Kalauzi, A., Djikanović, D. & Jeremić, M. (2010). Quantification of compression wood severity in tracheids of Pinus radiata D. Don using confocal fluorescence imaging and spectral deconvolution. J Struct Biol 169, 106115.CrossRefGoogle ScholarPubMed
Donaldson, L.A. & Xu, P. (2005). Microfibril orientation across the secondary cell wall of radiata pine tracheids. Trees 19, 644653.Google Scholar
Gierlinger, N., Luss, S., König, C., Konnerth, J., Eder, M. & Fratzi, P. (2010). Cellulose microfibril orientation of Picea abies and its variability at the micron-level determined by Raman imaging. J Exp Bot 61, 587595.Google Scholar
Gorišek, Ž. & Torelli, N. (1999). Microfibril angle in juvenile, adult and compression wood of spruce and silver fir. Phyton 39, 129132.Google Scholar
Harris, P.J. (2006). Primary and secondary plant cell walls: A comparative overview. NZ J For Sci 36, 3653.Google Scholar
Jang, H.F. (1998). Measurement of fibril angle in wood fibres with polarization confocal microscopy. J Pulp Pap Sci 24, 224230.Google Scholar
Khalili, S., Nilsson, T. & Daniel, G. (2001). The use of soft rot fungi for determining the microfibrillar orientation in the S2 layer of pine tracheids. Holz als Roh und Werkstoff 58, 439447.CrossRefGoogle Scholar
Mitrović, A., Donaldson, L.A., Djikanović, D., Bogdanović Pristov, J., Simonović, J., Mutavdžić, D., Kalauzi, A., Maksimović, V., Nanayakkara, B. & Radotić, K. (2015). Analysis of static bending-induced compression wood formation in juvenile Picea omorika (Pančić) Purkynĕ. Trees 5, 15331543.Google Scholar
Nanayakkara, B., Manley-Harris, M., Suckling, I.D. & Donaldson, L.A. (2009). Quantitative chemical indicators to assess the gradation of compression wood. Holzforschung 63, 431439.Google Scholar
Plomion, C., Le Provost, G. & Stokes, A. (2001). Wood formation in trees. Plant Physiol 127, 15131523.Google Scholar
Steinbach, G., Pawlak, K., Pomozi, I., Tóth, E.A., Molnár, A., Matkó, J. & Garab, G. (2014). Mapping microscopic order in plant and mammalian cells and tissues: Novel differential polarization attachment for new generation confocal microscopes (DP-LSM). Methods Appl Fluoresc 2, 015005 (9pp).Google Scholar
Steinbach, G., Pomozi, I., Zsiros, O., Menczel, L. & Garab, G. (2009). Imaging anisotropy using differential polarization laser scanning confocal microscopy. Acta Histochem 111, 316325.Google Scholar
Steinbach, G., Pomozi, I., Zsiros, O., Páy, A., Horváth, G.V. & Garab, G. (2008). Imaging fluorescence detected linear dichroism of plant cell walls in laser scanning confocal microscope. Cytometry A 73A, 202208.CrossRefGoogle Scholar
Thomas, J., Ingerfeld, M., Nair, H., Chauhan, S.S., David, A. & Collings, D.A. (2012). Pontamine fast scarlet 4B: A new fluorescent dye for visualising cell wall organisation in radiata pine tracheids. Wood Sci Technol 47, 5975.CrossRefGoogle Scholar
Timell, T.E. (1986). Compression Wood in Gymnosperms. Heidelberg: Springer-Verlag.Google Scholar
Verbelen, J.P. & Stickens, D. (1995). In vivo determination of fibril orientation in plant cell walls with polarization CSLM. J Microsc 177, 16.Google Scholar
Yumoto, M., Ishida, S. & Fukazawa, K. (1983). Studies on the formation and structure of compression wood cells induced by artificial inclination in young trees of Picea glauca. IV. Gradation of the severity of compression wood tracheids. Res Bull Coll Exp For Hokkaido Univ 40, 409454.Google Scholar