Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T00:36:45.541Z Has data issue: false hasContentIssue false

The Dynamics of Interacting Systems: Glassy Ionic Conductors and Glass-Forming Materials

Published online by Cambridge University Press:  10 February 2011

K. L. Ngai
Affiliation:
Naval Research Laboratory, Washington, DC 20375-5437 USA, ngai@estd.nrl.navy.mil
A. K. Rizos
Affiliation:
Department of Chemistry, University of Crete, and FORTH, Heraklion 71409, Crete, Greece
Get access

Abstract

The dynamics of densely packed interacting systems including glass-forming materials and glassy ionic conductors of various chemical and micro structures have been investigated experimentally by many workers, covering an immense time range from microscopic times shorter than 10−12 s to macroscopic times as long as 104 s. The short time dynamics is fundamental because it can directly reveal the microscopic mechanism of the relaxation. Several experimental investigations of structural relaxation in glass-forming substances have found that the short time dynamics shows exponential relaxation with a correlation function well described by exp(−to) for t<tc where tc is temperature insensitive and has the order of magnitude of a picosecond. The correlation function then crosses over at tc to assumes the stretched exponential form, exp[−(t/τ)β], for t>tc. The relaxation times τ and τo are related by the expression τ = [tc−(1−β)τo]1/β. In this work, we focus on glassy ionic conductors and ionic glass-forming materials and experiments that employ dielectric spectroscopic and conductivity relaxation techniques, the theme of this Symposium. We show that these experimental data exhibit the same feature as described above for structural relaxation and are in accord with the predictions of the coupling model proposed by one of the authors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kohlrausch, R.. Pogg.Ann.Phvsik, (3)12, 393 (1847).Google Scholar
2. Kohlrausch, R., Pogg.Ann.Physik, (4)1, 56, 179 (1854).Google Scholar
3. See papers in Proceedings of the First International Discussion Meeting on Relaxations in Complex Systems, J.Non-Cryst.Solids 131–133 (1991).Google Scholar
4. See papers in Proceedings of the Second International Discussion Meeting on Relaxations in Complex Systems J. Non-Cryst.Solids 172–174 (1994).Google Scholar
5. Ngai, K.L., Comments Solid State Phys. 9, 121 (1979).Google Scholar
6. Ngai, K.L. in Disorder Effects on Relaxational Properties, edited by Richert, R. and Blumen, A. (Springer, Berlin 1994), p. 89150.Google Scholar
7. Ngai, K.L. and Rendell, R.W., J.Non-Cryst.Solids. 131–133, 233 (1991); K.L. Ngai, S.L. Peng and K.Y. Tsang, Physica A., 191, 523 (1992).Google Scholar
8. Ngai, K.L. and Tsang, K.-Y., Macromol. Symp. 90, 95 (1995).Google Scholar
9. Colmenero, J., Arbe, A. and Alegria, A., Phys.Rev.Lett. 71, 2603 (1993).Google Scholar
10. Ngai, K.L., Colmenero, J., Arbe, A., and Alegria, A., Macromolecules. 25 6727 (1992).Google Scholar
11. Colmenero, J., Arbe, A. and Alegria, A., J.Non-Cryst.Solids, 172–174, 126 (1994).Google Scholar
12. Zorn, R., Arbe, A., Colmenero, J., Frick, B., Richter, D., and Buchenau, U., Phys.Rev.E 52, (1995) 781.Google Scholar
13. Lewis, L.J. and Wahnstrm, , Phys.Rev.E 50, 3865 (1994).Google Scholar
14. Roland, C.M., Ngai, K.L. and Lewis, L.J., J.Chem.Phys. 103, 4632 (1995).Google Scholar
15. Ngai, K.L. and Plazek, D.J., Rubber Chem.Tech. Rubber Reviews, 68, 376 (1995).Google Scholar
16. Ngai, K.L., J.Non-Cryst.Solids, (1996) in press.Google Scholar
17. Cramer, C., Funke, K. and Saatkamp, T., Phil.Mag. B71, 701 (1995); C. Cramerm, K. Funke, T. Saatkamp, D. Wilmer, and M.D. Ingram, Z. Naturforsch. A, in press.Google Scholar
18. Cramer, C., Funke, K., Buscher, M., Happe, A., Saatkamp, T., and Wilmer, D.,Phil.Mag. B71, 713 (1995). K.L. Ngai, C.Cramer, T. Saatkamp, and K. Funke, Proceedings of the Workshop on Non-Equilibrium Phenomena in Supercooled Fluids. Glasses, and Amorphous Materials, Sept.1995, Pisa, Italy, edited by D. Leporini (World Scientific).Google Scholar
19. Funke, K., Prog.Solid St.Chem. 22, 111 (1993).Google Scholar
20. Funke, K., J.Non-Cryst.Solids,172–174, 1215 (1994).Google Scholar
21. Ngai, K.L. and Strom, U., Phys.Rev.B38, 10350 (1988).Google Scholar
22. Ngai, K.L., Solid State Ionics 61, 345 (1993).Google Scholar
23. Ngai, K.L. and Kanert, O., Solid State Ionics, 53–56, 936 (1992); K.L. Ngai, U. Strom, and O. Kanert, Phys.Chem.Glasses, 33, 1 (1992).Google Scholar
24. Ngai, K.L. and Jain, H., Solid State Ionics, 18&19, 362 (1986).Google Scholar
25. Greaves, G.N. and Ngai, K.L., Phys.Rev.B52, 6358 (1995).Google Scholar
26. Ngai, K.L., Rendell, R.W. and Jain, H., Phys.Rev.B30, 2133 (1984).Google Scholar
27. Tatsumisago, M., Angell, C.A. and Martin, S.W., J.Chem.Phys. 97, 274 (1992)Google Scholar
28. Ngai, K.L., J.Chem.Phys. 98, 6426 (1993); Phys.Rev.B48, 13481 (1993).Google Scholar
29. Macedo, P.B., Moynihan, C.T. and Bose, R., Phys.Chem.Glasses 13, 171 (1972); F.S. Howell, R.A. Bose, P.B. Macedo, and C.T. Moynihan, J.Phys.Chem.78, 639 (1974).Google Scholar
30. Moynihan, C.T., J.Non-Cryst.Solids 172–174, 1395 (1994). In this reference, many of the criticisms of the electric modulus have been answered.Google Scholar
31. Strom, U., Hendrickson, J.R., Wagner, R.J. and Taylor, P.C., Solid State Commun. 15, 1871(1974); U. Strom and P.C. Taylor, Phys.Rev. B16, 5512 (1977).Google Scholar
32. Smith, W., Gillen, W., and Greaves, G.N., J.Chem.Phys. 103 (1995).Google Scholar
33. Roe, R.J., J.Chem.Phys. 100, 1610 (1994).Google Scholar
34. Angell, C.A., Poole, W., and Shao, J., Nuovo Cimento 16, 993 (1994).Google Scholar
35. Signorini, G.F., Barrat, J.L., and Klein, M.L., J.Chem.Phys. 92, 1294 (1990).Google Scholar
36. Ngai, K.L. in J.Phys.(Paris) 2, Colloque C2, Suppl.JPIII no.10, 61 (1992).Google Scholar
37. Ngai, K.L. and Greaves, G.N. in Diffusion in Amorphous Materials, edited by Jain, H. and Dupta, D., TMS (Warrendale, PA, 1994), p. 1732.Google Scholar
38. Maass, P., Petersen, J., Bunde, J., Dieterich, W., and Roman, E., Phys.Rev.Lett. 66, 52 (1991).Google Scholar
39. Dieterich, W., Knödler, D. and pendzig, P., J.Non-Cryst.Solids 172–174, 1237 (1994).Google Scholar
40. Kanert, O., Steinert, J., Jain, H. and Ngai, K.L., J.Non-Cryst.Solids 131–133, 1001 (1991)Google Scholar
41. Dianoux, A.J., Tachez, M., Mercier, R. and Malugani, J.P., J.Non-Cryst.Solids 131–133, 973 (1991).Google Scholar
42. Owens, A.P., Pradel, A., Ribes, M. and Elliott, S.R., J. Non-Cryst.Solids 131–133, 1104 (1991)Google Scholar
43. Kincs, J. and Martin, S.W., Phys.Rev.Letters, 76, 70 (1996).Google Scholar
44. Liu, C. and Angell, C.A., J.Non-Cryst.Solids 83, 162 (1986).Google Scholar
45. Bunde, A., Ingram, M.D. and Maass, P., J. Non-Cryst.Solids 172–174, 1222 (1994).Google Scholar
46. Svare, I., Borsa, F., Torgeson, D.R. and Martin, S.W., J.Non-Cryst.Solids 172–174,1300 (1994).Google Scholar
47. Moynihan, C.T., Boesch, L.P., and Laberge, N.L., Phys.Chem.Glasses 14, 122 (1973).Google Scholar
48. Provencher, S.W., Comput.Phys.Commun. 27, 213 (1982).Google Scholar