Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-20T03:38:38.168Z Has data issue: false hasContentIssue false

Application of Colloidal Palladium Nanoparticles for Labeling in Electron Microscopy

Published online by Cambridge University Press:  09 September 2011

Marie Vancová*
Affiliation:
Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 31, 370 05 České Budějovice, Czech Republic Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice 37005, Czech Republic
Miroslav Šlouf
Affiliation:
Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
Jan Langhans
Affiliation:
Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 31, 370 05 České Budějovice, Czech Republic
Eva Pavlová
Affiliation:
Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
Jana Nebesářová
Affiliation:
Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 31, 370 05 České Budějovice, Czech Republic Faculty of Science, Charles University in Prague, Viničná 7, 128 43 Prague, Czech Republic
*
Corresponding author. E-mail: vancova@paru.cas.cz
Get access

Abstract

The application of palladium nanoparticles as electron-dense markers for labeling in both transmission and scanning electron microscopy requires their conjugation to a specific protein. The conjugation protocol described here includes the dihydrolipoic acid (DHLA) capping of Pd nanoparticles (8 nm equivalent diameter) and their subsequent covalent attachment to functional protein molecules such as streptavidin, protein A, or avidin. The single-step reaction was mediated using the cross-linking agent ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). The final Pd conjugates were fully functional, as demonstrated by labeling of ultrathin resin sections of either bovine serum albumin or secretory granules of the salivary gland isolated from the partially fed female Ixodes ricinus tick. The results of bovine serum labeling were quantified, statistically evaluated, and compared with results obtained using commercially available gold particle conjugates (10 nm diameter). The highest values of labeling density were achieved using both streptavidin-Pd (106 ± 7 particles/μm2) and protein A-Au conjugates (130 ± 18 particles/μm2) compared to a commercial streptavidin-Au (66 ± 16 particles/μm2) and protein A-Pd conjugates (70 ± 11 particles/μm2). The concentrations of both DHLA and EDC, pH during conjugation, and finally thorough washing away of unbound proteins crucially influenced conjugation.

Type
Equipment/Techniques Development
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramoff, M.D., Magelhaes, P.J. & Ram, S.J. (2004). Image processing with the ImageJ. Biophotonics Int 11(7), 3642.Google Scholar
Alfonso, D.R. (2005). First-principles study of sulfur overlayers on Pd(111) surface. Surf Sci 596, 229241.CrossRefGoogle Scholar
Alfonso, D.R. (2006). Initial incorporation of sulfur into the Pd(111) surface: A theoretical study. Surf Sci 600, 45084516.Google Scholar
Clapp, A.R., Goldman, E.R. & Mattoussi, H. (2006). Capping of CdSe-ZnS quantum dots with DHLA and subsequent conjugation with proteins. Nat Protoc 1, 12581266.CrossRefGoogle ScholarPubMed
Debray, H. & Montreuil, J. (1989). Aleuria aurantia agglutinin. A new isolation procedure and further study of its specificity towards various glycopeptides and oligosaccharides. Carbohydr Res 185 (1), 1526.Google Scholar
Ghitescu, L. & Bendayan, M. (1990). Immunolabeling efficiency of protein A-gold complexes. J Histochem Cytochem 38, 15231530.Google Scholar
Goldman, E.R., Balighian, E.D., Mattoussi, H., Kuno, M.K., Mauro, J., Matthew, J.M., Tran, P.T. & Anderson, G.P. (2002). Avidin: A natural bridge for quantum dot-antibody conjugates. J Am Chem Soc 124, 63786382CrossRefGoogle ScholarPubMed
Griffiths, G. (1993). Fine Structure Immunocytochemistry. Berlin, Heidelberg, Germany: Springer-Verlag.CrossRefGoogle Scholar
Hermanson, G.T. (2008). Bioconjugate Techniques, 2nd ed.San Diego, CA: Academic Press.Google Scholar
Kandela, I.K. & Albrecht, R.M. (2007). Fluorescence quenching by colloidal heavy metals nanoparticles: Implications for correlative fluorescence and electron microscopy studies. Scanning 29(4), 152161.CrossRefGoogle ScholarPubMed
Kandela, I.K., Bleher, R. & Albrecht, R.M. (2007). Multiple correlative immunolabeling for light and electron microscopy using fluorophores and colloidal metal particles. J Histochem Cytochem 55(10), 989990.CrossRefGoogle ScholarPubMed
Koeck, P.J.B., Schröder, R.R., Haider, M. & Leonard, K.R. (1996). Unconventional immune double labeling by energy filtered transmission electron microscopy. Ultramicroscopy 62, 6578.Google Scholar
Leunissen, J.L.M. & De Mey, J.R. (1989). Preparation of gold probes. In Immuno-Gold Labeling in Cell Biology, Verkleij, A.J. & Leunissen, J.L.M. (Eds.), pp. 316. Boca Raton, FL: CRC Press.Google Scholar
Meyer, D.A., Oliver, J.A. & Albrecht, R.M. (2010). Colloidal palladium nanoparticles of different shapes for electron microscopy labeling. Microsc Microanal 16, 3342.CrossRefGoogle ScholarPubMed
Mizukoshi, Y., Fujimoto, T., Nagata, Y., Oshima, R. & Maeda, Y. (2000). Characterization and catalytic activity of core−shell structured gold/palladium bimetallic nanoparticles synthesized by the sonochemical method. J Phys Chem B 104, 60286032.CrossRefGoogle Scholar
O'Shea, E.K., Lumb, K.J. & Kim, P.S. (1993). Peptide velcro-design of a heterodimeric coiled-coil. Curr Biol 3, 658667.CrossRefGoogle ScholarPubMed
Robinson, J.M., Takizawa, T. & Vandré, D.D. (2000). Enhanced labeling efficiency using ultrasmall imunogold probes: Immunocytochemistry. J Histochem Cytochem 48, 487492.CrossRefGoogle Scholar
Roux, S., Garcia, B., Bridot, J.L., Salomé, M., Marquette, C., Lemelle, L., Gillet, P., Blum, L., Perriat, P. & Tillement, O. (2005). Synthesis, characterization of dihydrolipoic acid capped gold nanoparticles, and functionalization by the electroluminescent luminol. Langmuir 21(6), 25262536.Google Scholar
Shen, H., Jawaid, A.M. & Snee, P.T. (2009). Poly(ethylene glycol) carbodiimide coupling reagents for the biological and chemical functionalization of water-soluble nanoparticles. ACS Nano 3, 915923.Google Scholar
Slot, J.W., Geuze, H.J. & Weerkamp, A.J. (1988). Localization of macromolecular components by application of the immunogold technique on cryosectioned bacteria. Methods Microbiol 20, 211236.Google Scholar
Slot, J.W., Posthuma, G., Chang, L.Y., Crapo, J.D. & Geuze, H.J. (1989). Quantitative aspects of immuno-gold labeling in cryosections. In Immuno-Gold Labeling in Cell Biology, Verkleij, A.J. & Leunissen, J.L.M. (Eds.), pp. 135155. Boca Raton, FL: CRC Press.Google Scholar
Stierhof, Y.D., Schearz, H. & Frank, H. (1986). Transverse sectioning of plastic-embedded immunolabeled cryosections: Morphology and permeability to Protein A-colloidal gold complexes. J Ultrastruct Mol Struct Res 97, 187196.CrossRefGoogle ScholarPubMed
Turkevich, J. & Kim, G. (1970). Palladium: Preparation and catalytic properties of particles of uniform size. Science 169, 873879.CrossRefGoogle ScholarPubMed
Vancová, M., Zacharovová, K., Grubhoffer, L. & Nebesarová, J. (2006). Ultrastructure and lectin characterization of granular salivary cells from Ixodes ricinus females. J Parasitol 92(3), 431440.CrossRefGoogle ScholarPubMed
Yamashita, K., Kochibe, N., Ohkura, T., Ueda, I. & Kobata, A. (1985). Fractionation of L-fucose-containing oligosaccharides on immobilized Aleuria aurantia lectin. J Biol Chem 260, 46884693.Google Scholar