Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-18T04:49:00.763Z Has data issue: false hasContentIssue false

Multiple effects of tebufenozide on the survival and performance of the spruce budworm (Lepidoptera: Tortricidae)

Published online by Cambridge University Press:  03 October 2016

Kees van Frankenhuyzen
Affiliation:
Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quèbec, Quèbec, G1V 4C7, Canada
Jacques Régnière*
Affiliation:
Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quèbec, Quèbec, G1V 4C7, Canada
*
1Corresponding author (e-mail: Jacques.Regniere@canada.ca).

Abstract

Aerial application of Mimic® 2LV to rising outbreak populations of the spruce budworm (Choristoneura fumiferana (Clemens); Lepidoptera: Tortricidae) in Québec, Canada, resulted in high levels of population reduction at spray deposits of 0.5–1.2 μg tebufenozide/g of foliage. Application to potted host trees in outdoor enclosures followed by bioassays revealed multiple effects on spruce budworm survival and recruitment. Chronic (14-day) exposure of late-instars to treated foliage reduced larval survival and also pupal survival, mating success, and fecundity, depending on the product concentration applied. Treatments that produced foliar deposits of ~ 0.5–1.5 μg tebufenozide/g caused high larval mortality. Exposure to deposits of ~ 0.15–0.5 μg/g caused delayed mortality during the pupal stage and reduced the mating success of survivors, while exposure to ~ 0.07–0.15 μg/g reduced the fecundity of mated females. Sublethal exposure did not affect the progeny of survivors, either in egg hatch, survival during diapause, or survival and performance after diapause. Reduced survival during late-larval and pupal stages combined with lower recruitment as a result of reduced mating success and fecundity are likely to play a role in the suppression of Mimic®-treated spruce budworm populations in the years following treatment.

Résumé

L’application aérienne de Mimic® 2LV sur des populations en croissance de la tordeuse des bourgeons de l’épinette (Choristoneura fumiferana (Clemens); Lepidoptera: Tortricidae) au Québec, Canada, a causé de forts taux de réduction des populations avec des dépôts de 0.5–1.2 μg de tébufenozide par g de feuillage. Des bioessais faits à la suite d’applications sur des arbres en pots dans des enclos extérieurs ont révélé de multiples effets sur la survie et le recrutement de la tordeuse. Une exposition chronique (14 jours) de larves d’âge avancé à du feuillage traité a réduit non seulement leur survie, mais également celle des chrysalides, le succès d’accouplement et la fécondité des survivants, selon la concentration appliquée. Des traitements produisant un dépôt foliaire de ~ 0.5–1.5 μg de tébufenozide par g ont causé une forte mortalité. L’exposition à un dépôt de ~ 0.15–0.5 μg par g a causé une mortalité retardée au cours de la pupaison et la réduction du succès d’accouplement des survivants. L’exposition à ~ 0.07–0.15 μg par g a quant à elle réduit la fécondité des femelles accouplées. L’exposition sous-létale n’a eu aucun effet sur la progéniture des survivants, que ce soit en termes d’éclosion des œufs, de survie en diapause ou de survie et performance post-diapause. La survie réduite des stades larvaires avancés et des chrysalides, combinée avec le recrutement réduit chez les survivants résultant des baisses de succès d’accouplement et de fécondité, contribuent vraisemblablement à la suppression des populations de tordeuse traitées au Mimic® au cours des années suivant les traitements.

Type
Insect Management
Copyright
© Her Majesty the Queen in Right of Canada 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Jon Sweeney

References

Anonymous. 1991. Data sheet 15293-4/85 on RH-5992. Rohm and Hass Company, Philadelphia, Pennsylvania, United States of America.Google Scholar
Biddinger, D., Hull, L., Huang, H., Mcpheron, B., and Loyer, M. 2006. Sublethal effects of chronic exposure to tebufenozide on the development, survival, and reproduction of the tufted apple bud moth (Lepidoptera: Tortricidae). Journal of Economic Entomology, 99: 834842.CrossRefGoogle ScholarPubMed
Cadogan, L., Retnakaran, A., and Meating, J. 1997. Efficacy of RH5992, a new insect growth regulator against spruce budworm in a boreal forest. Journal of Economic Entomology, 90: 551559.Google Scholar
Cadogan, L., Scharbach, R., Knowles, K., and Krause, R. 2005. Efficacy evaluation of a reduced dosage of tebufenozide applied aerially to control spruce budworm. Crop Protection, 24: 557563.Google Scholar
Cadogan, L., Scharbach, R., Krause, R., and Knowles, K. 2002. Evaluation of tebufenozide carry-over and residual effects on spruce budworm. Journal of Economic Entomology, 95: 578586.Google Scholar
Cadogan, L., Thompson, D., Retnakaran, A., Scharbach, R., Robinson, A., and Staznik, B. 1998. Deposition of aerially applied tebufenozide (RH5992) on balsam fir and its control of spruce budworm. Pesticide Science, 53: 8090.Google Scholar
Carpenter, J.E. and Chandler, L.D. 1994. Effects of sublethal doses of two insect growth regulators on Helicoverpa zea (Lepidoptera: Noctuidae) reproduction. Journal of Entomological Science, 29: 428435.Google Scholar
Dallaire, R., Labrecque, A., Marcotte, M., Bauce, E., and Delisle, J. 2004. The sublethal effects of tebufenozide on the precopulatory and copulatory activities of Choristoneura fumiferana and C. rosaceana . Entomologia Experimentalis et Applicata, 112: 169181.Google Scholar
Dhadialla, T.S., Carlson, G.R., and Le, D.P. 1998. New insecticides with ecdysteroid and juvenile hormone activity. Annual Review of Entomology, 43: 545569.Google Scholar
Doucet, D., Frisco, C., Cusson, M., Bauce, E., Palli, S., Tomkins, B., et al. 2007. Diapause disruption with tebufenozide for early-instar control of the spruce budworm. Pest Management Science, 63: 730736.Google Scholar
Fettes, J.J. 1950. Investigation of sampling techniques for population studies of the spruce budworm on balsam fir in Ontario. Forest Insect Laboratory, Sault Ste. Marie, Ontario, Canada, Annual Technical Report, 4, 163–401.Google Scholar
Grisdale, D.G. 1984. A laboratory method for mass rearing the eastern spruce budworm, Choristoneura fumiferana . In Advances and challenges in insect rearing. Edited by E.G. King and N.C. Leppla. United States Department of Agriculture, Agricultural Research Service, Washington, District of Columbia, United States of America. Pp. 223231.Google Scholar
McLeod, I.M., Lucarotti, C.J., Hennigar, C.R., MacLean, D.A., Holloway, A.G.L., Cormier, G.A., et al. 2012. Advances in aerial application technologies and decision support for integrated pest management. In Integrated pest management and pest control. Edited by S. Soloneski and M.L. Larramendy. InTech Open Access Publisher, Rijeka, Croatia. Pp. 651668.Google Scholar
Palli, S.R., Primavera, M., Tomkins, W., Lambert, D., and Retnakaran, A. 1995. Age-specific effects of a non-steroidal ecdysteroid agonist, RH-5992, on the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). European Journal of Entomology, 92: 325332.Google Scholar
Pureswaran, D.S., De Grandpré, L., Paré, D., Taylor, A., Barrette, M., Morin, H., et al. 2015. Climate-induced changes in host tree–insect phenology may drive ecological state-shift in boreal forests. Ecology, 96: 14801491.Google Scholar
Régnière, J., Cadogan, L., and Retnakaran, A. 2005. Mimic applied against L1 and L5 spruce budworm: Manitoba trials 2000/2001. SERG Report 1999/05 [online]. Available from http://www.serginternational.org/reports/1999-05_2000_2005.htm [accessed 12 May 2016].Google Scholar
Régnière, J. and Sanders, C.J. 1983. Optimal sample size for the estimation of spruce budworm (Lepidoptera: Tortricidae) populations on balsam fir and white spruce. The Canadian Entomologist, 115: 16211626.Google Scholar
Retnakaran, A., Krell, P., Feng, Q., and Arif, B. 2003. Ecdysone agonists: mechanisms and importance in controlling insect pests of agriculture and forestry. Archives of Insect Biochemistry and Physiology, 54: 187199.Google Scholar
Retnakaran, A., Smith, L., Tomkins, W., Primavera, M., Palli, S.R., and Payne, N. 1997. Effect of RH-5992, a nonesteroidal ecdysone agonist, on the spruce budworm: laboratory and greenhouse trials. The Canadian Entomologist, 129: 871885.Google Scholar
Retnakaran, A., Tomkins, W.L., Primevera, M.J., and Palli, S.R. 1999. Feeding behaviour of the first instar spruce budworm, Choristoneura fumiferana Clemens, and jack pine budworm, Choristoneura pinus pinus (Lepidoptera: Tortricidae). The Canadian Entomologist, 131: 16.Google Scholar
Rodriguez, L.M., Reagan, T.E., and Ottea, J.A. 2001. Susceptibility of Diatraea saccharalis (Lepidoptera: Crambidae) to tebufenozide. Journal of Economic Entomology, 94: 14641470.CrossRefGoogle ScholarPubMed
Rodriguez, L.M., Woolwine, A.E., Ostheimer, E.A., Schexnayder, H.P., Reagan, T.E., and White, W.H. 1998. Insecticidal control of the sugarcane borer – aerial application test, 1997. Arthropod Management Tests, 23: 287.Google Scholar
Salem, H., Smagghe, G., and Degheele, D. 1997. Effects of tebufenozide on oocyte growth in Plodia interpunctella . Mededelingen van de Faculteit Landbouwwetenschappen Rijksuniversiteit Ghent, 62: 913.Google Scholar
Sauphanor, B., Bouvier, J.C., and Brosse, V. 1999. Effect of an ecdysteroid agonist, tebufenozide, on the completion of diapause in susceptible and resistant strains of the codling moth, Cydia pomonella . Entomologia Experimentalis et Applicata, 90: 157165.Google Scholar
Seth, R.K, Kaur, J.J., Rao, D.K., and Reynolds, S.E. 2004. Effects of larval exposure to sublethal concentrations of the ecdysteroid agonists RH-5849 and tebufenozide (RH-5992) on male reproductive physiology in Spodoptera litura . Journal of Insect Physiology, 50: 505517.Google Scholar
Smagghe, G. and Degheele, D. 1994a. Action of a novel nonsteroid mimic, tebufenozide (RH-5992), on insects of different orders. Pesticide Science, 42: 8592.CrossRefGoogle Scholar
Smagghe, G. and Degheele, D. 1994b. The significance of pharmacokinetics and metabolism to the biological activity of RH-5992 (tebufenozide) in Spodoptera exempta, Spodoptera exigua, and Leptinotarsa decemlineata . Pesticide Biochemistry and Physiology, 49: 224234.Google Scholar
Smirle, M.J., Lowery, D.T., and Zurowski, C.L. 2004. Chemical residues and bioactivity of tebufenozide applied to apple foliage. Pest Management Science, 60: 137142.CrossRefGoogle ScholarPubMed
Stehr, G. 1954. A laboratory method for rearing the spruce budworm, Choristoneura fumiferana (Clem.), (Lepidoptera: Tortricidae). The Canadian Entomologist, 86: 423428.CrossRefGoogle Scholar
Sun, X., Barrett, B.A., and Biddinger, D.J. 2000. Fecundity and fertility reductions in adult leafrollers exposed to surfaces treated with the ecdysteroid agonist tebufenozide and methoxyfenozide. Entomologia Experimentalis et Applicata, 94: 7583.Google Scholar
Sundaram, M. 1994. Rain-washing of Mimic®, RH-5992, from balsam fir foliage following application of two formulations. Journal of Environmental Sciences and Health, B29: 541579.Google Scholar
Sundaram, M., Palli, S.R., Ishaaya, I., Krell, P., and Retnakaran., A. 1998. Toxicity of ecdysone agonists correlates with induction of CH3 mRNA in the spruce budworm. Pesticide Biochemestry and Physiology, 62: 201208.Google Scholar
Sundaram, M., Palli, S.R., Smagghe, G., Isayaah, I., Feng, Q.L., Primevera, M., et al. 2002. Effect of RH-5992 on adult development in the spruce budworm, Choristoneura fumiferana . Insect Biochemistry and Molecular Biology, 32: 225231.Google Scholar
Sundaram, M., Sundaram, A., and Sloane, L. 1996. Foliar persistence and residual activity of tebufenozide against spruce budworm larvae. Pesticide Science, 44: 3140.Google Scholar
van Vliet, M. and Picot, J.J.C. 1987. Drop spectrum characterization for the Micronair AU4000 aerial spray atomizer. Atomization and Spray Technology, 3: 123134.Google Scholar
Whiting, D.C., Jamieson, L.E., and Connolly, P.G. 1999. Effect of sublethal tebufenozide applications on the mortality responses of Epiphyas postvittana (Lepidoptera: Tortricidae) larvae exposed to a high-temperature controlled atmosphere. Journal of Economic Entomology, 92: 445452.Google Scholar
Wing, K.D., Slawecki, R.A., and Carlson, G.R. 1988. RH5849, a nonsteroidal ecdysone agonist: effects on larval Lepidoptera. Science, 241: 470472.Google Scholar