Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T12:37:09.405Z Has data issue: false hasContentIssue false

Direct Synthesis of Silicon Nanowires using Silane and Molten Gallium

Published online by Cambridge University Press:  11 February 2011

Shashank Sharma
Affiliation:
Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, USA
Mahendra K. Sunkara*
Affiliation:
Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, USA
Elizabeth C. Dickey
Affiliation:
Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802
Get access

Abstract

We report for the first time, bulk synthesis of single crystalline silicon nanowires using molten gallium pools and an activated vapor phase containing silane. The resulting silicon nanowires were single crystalline with <100> growth direction. Nanowires contained an unexpectedly thin, non-uniform oxide sheath determined using high-resolution Transmission Electron Microscopy (TEM). Nanowires were tens of nanometers in diameter and tens to hundreds of microns long. The use of activated gas phase chemistry containing solute of interest over molten metal pools of low-solubility eutectics such as gallium offer a viable route to generate nanowire systems containing abrupt compositional hetero-interfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wagner, R.S. and Ellis, W.C., Appl. Phys. Lett. 4 (5), 89 (1964).Google Scholar
2. Morales, A.M. and Lieber, C.M., Science 279, 208 (1998).Google Scholar
3. Westwater, J., Gosain, D.P., Tomiya, S., Usui, S., Ruda, H., J. Vac. Sci. Technol. B 15 (3), 554 (1997).Google Scholar
4. Zhang, Y.F., Tang, Y.H., Wang, N., Yu, D.P., Lee, C.S., Bello, I., Lee, S.T., Appl. Phys. Lett. 72 (15), 1835 (1998).Google Scholar
5. Wu, Y. and Yang, P., Chem. Mater. 12, 605 (2000).Google Scholar
6. Cui, Y.. Lauhon, L.J., Gudiksen, M.S., Wang, J., and Lieber, C.M., Appl. Phys. Lett. 78 (15), 2214 (2001).Google Scholar
7. Sunkara, M.K., Sharma, S., Miranda, R., Lian, G., and Dickey, E.C., Appl. Phys. Lett. 79 (10), 1546 (2001).Google Scholar
8. Sharma, S., Sunkara, M.K., Miranda, R., Lian, G., and Dickey, E.C., Proc. MRS Spring 2001 Meeting Vol. 676, Y.1.6.1 (2001).Google Scholar
9. Sharma, S., Sunkara, M.K., Lian, G., and Dickey, E.C., Proc. MRS Fall 2001 Meeting Vol. 703, 123 (2001).Google Scholar
10. Tan, T.Y., Lee, S.T., and Gosele, U., Appl. Phys. A. 74, 423 (2002).Google Scholar
11. Holmes, J.D., Johnston, K.P., Doty, R.C., Korgel, B.A., Science 287, 14711473 (2000).Google Scholar
12. Zianni, X. and Nassiopoulou, A.G., Phys. Rev. B. 65, 035326–1 (2002).Google Scholar
13. Yorikawa, H., Uchida, H., and Muramatsu, S., J. Appl. Phys. 79 (7), 3619 (1996).Google Scholar
14. Thurmond, C.D. and Kowalchik, M., The Bell System Tech. J. 39, 169204 (1960).Google Scholar
15. Turnbull, D., J. Appl. Phys. 21, 1022 (1950).Google Scholar
16. Wu, Y., Fan, R., and Yang, P., Nano Lett. 2 (2), 83 (2002).Google Scholar
17. Gudikson, M.S., Lauhon, L.J., Wang, J., Smith, D.C., and Lieber, C.M., Nature 415, 617 (2002).Google Scholar
18. Chandrasekaran, H. and Sunkara, M.K., MRS Symp. Proc. Vol. 693, 159164, 2001.Google Scholar
19. Sharma, S. and Sunkara, M.K., J. Am. Chem. Soc. 124 (41), 12289 (2002).Google Scholar