Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T23:24:28.626Z Has data issue: false hasContentIssue false

Cluster Diffusion and Coalescence on Metal Surfaces: applications of a Self-learning Kinetic Monte-Carlo method

Published online by Cambridge University Press:  01 February 2011

Talat S. Rahman
Affiliation:
Department of Physics, Cardwell Hall, Kansas State University, Manhattan, KS 66506 email:rahman@phys.ksu.edu
Abdelkader Kara
Affiliation:
Department of Physics, Cardwell Hall, Kansas State University, Manhattan, KS 66506
Altaf Karim
Affiliation:
Department of Physics, Cardwell Hall, Kansas State University, Manhattan, KS 66506
Oleg Trushin
Affiliation:
Institute of Microelectronics and Informatics, Russian Academy of Sciences, Yaroslavl 150007, Russia.
Get access

Abstract

The Kinetic Monte Carlo (KMC) method has become an important tool for examination of phenomena like surface diffusion and thin film growth because of its ability to carry out simulations for time scales that are relevant to experiments. But the method generally has limited predictive power because of its reliance on predetermined atomic events and their energetics as input. We present a novel method, within the lattice gas model in which we combine standard KMC with automatic generation of a table of microscopic events, facilitated by a pattern recognition scheme. Each time the system encounters a new configuration, the algorithm initiates a procedure for saddle point search around a given energy minimum. Nontrivial paths are thus selected and the fully characterized transition path is permanently recorded in a database for future usage. The system thus automatically builds up all possible single and multiple atom processes that it needs for a sustained simulation. Application of the method to the examination of the diffusion of 2-dimensional adatom clusters on Cu(111) displays the key role played by specific diffusion processes and also reveals the presence of a number of multiple atom processes, whose importance is found to decrease with increasing cluster size and decreasing surface temperature. Similarly, the rate limiting steps in the coalescence of adatom islands are determined. Results are compared with those from experiments where available and with those from KMC simulations based on a fixed catalogue of diffusion processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Villain., J., J. Phys. 11, 19 (1991).Google Scholar
2. Krug., J., Adv. Phys. 46, 139 (1997)Google Scholar
3. Venables, J. A., Philos. Mag. 27 697 (1973)Google Scholar
4. Ratsch, C. and Venables, J. A., J. Vac. Sci. Technol. A 21, S96 (2003)Google Scholar
5. Voter, A.F., Montalenti., F., Germann, T. C., Annu. Rev. Mater.Res. 32, 321 (2002).Google Scholar
6. Bortz, A.B., Kalos, M.H., and Lebowitz, J.L., J. Comp. Phys. 17, 10 (1975).Google Scholar
7. Voter, A.F., Phys. Rev. B 34, 6819 (1986).Google Scholar
8. Maksym, P.A., Semicond. Sci. Technol. 3, 594 (1988).Google Scholar
9. Tsao, J.Y., Materials Fundamentals of Molecular Beam Epitaxy, World Scientific, Singapore, (1993)Google Scholar
10. Barabasi, A.-L. and Stanley, H.E., Fractal Concepts in Surface Growth, Cambridge University Press, New York (1995).Google Scholar
11. Caspersen, K.J., Stoldt, C.R., Layson, A.R., Bartelt, M.C., Thiel, P.A., and Evans, J.W., Phys. Rev. B 63, 085401 (2001).Google Scholar
12. Morgenstern., K., Rosenfeld., G., Poelsema., B., and Comsa., G., Phys. Rev. Lett. 74, 2058 (1995);Google Scholar
Morgenstern., K., Rosenfeld., G., and Comsa., G., Phys. Rev. Lett. 76, 2113 (1996).Google Scholar
13. Giesen., M., Prog. Surf. Sci. 68, 1 (2001).Google Scholar
14. Vineyard, G. H., J. Phys. Chem. Solids 3, 121 (1957)Google Scholar
15. Trushin, O.S., Salo., P., Ala-Nissila, T., Phys. Rev. B 62, 1611 (2000).Google Scholar
16. Salo., P., Hirvonen., J., Koponen, I.T., Trushin, O.S, Heinonen., J., Ala-Nissila, T., PRB 64,161405 (2001).Google Scholar
17. Wang, S.C., Kurpick., U., Ehrlich., G., Phys. Rev. Lett., 81, p.4923 (1998).Google Scholar
18. Wang, S.C., Ehrlich., G., Phys. Rev. Lett. 79, p. 4234 (1997).Google Scholar
19. Voter, A.F., Phys. Rev. B 57, 13985 (1998);Google Scholar
Voter, A.F., J. Chem. Phys. 106, 4665 (1997).Google Scholar
20. Sørensen, M. R., Voter, A. F., J. Chem. Phys. 112, 9599 (2000).Google Scholar
21. Henkelman., G., Jonsson., H., J. Chem. Phys. 115, 9657 (2001); Phys. Rev. Lett. 90, 116101 (2003).Google Scholar
22. Barkema, G. T., Mousseau., N., Phys. Rev. Lett. 77, 4358 (1996).Google Scholar
23. Trushin., O., Kara., A., Karim., A., and Rahman, T. S., to be published (www.phys.ksu.edu/~rahman).Google Scholar
24. Kellog, G. L. and Voter, A. F., Phys. Rev. Lett., 67 622, (1991).Google Scholar
25. Wang, S. C., Kürpick, U., and Ehrlich., G., Phys. Rev. Lett. 81, 4923 (1998).Google Scholar
26. Pai, W.W., Swan, A.K., Zhang., Z., and Wendelken, J.F., Phys. Rev. Lett. 79, 3210 (1997).Google Scholar
27. Soler, J.M., Phys. Rev. B 50, 5578 (1994).Google Scholar
28. Wen, J.M., Chang, S.L., Burnett, J.W., Evans, J.W., and Thiel, P.A., Phys. Rev. Lett. 73, 2591 (1994).Google Scholar
29. Soler, J.M., Phys. Rev. B 53, R10 540 (1996).Google Scholar
30. Khare, S. V., Bartelt, N. C., and Einstein, T. L., Phys. Rev. Lett. 75, 2148 (1995);Google Scholar
Hamilton, J. C., Daw, M. S., and Foiles, S. M., Phys. Rev. Lett. 74, 2760 (1995);Google Scholar
Van Siclen, C. DeW., Phys. Rev. Lett. 75, 1574 (1995).Google Scholar
31. Kurpick., U., Kurpick., P., and Rahman, T. S., Surf. Sci. Lett. 383, L713 (1997).Google Scholar
32. Bogicevic., A., Liu., S., Jacobsen., J., Lundqvist., B., and Metiu., H., Phys. Rev. B 57, R9459 (1998).Google Scholar
33. Ghosh., C., Kara., A., and Rahman, T. S., to be published; C. Ghosh. PhD thesis, Kansas State University, 2003.Google Scholar
34. Rahman, T. S., Ghosh., C., Trushin., O., Kara., A., and Karim., A., “Atomistic Studies of Thin Film Growth, Proc. SPIE Annual Meeting 2004, 5509, 1 (2004).Google Scholar
35. Foiles, S.M., Bakes, M.I., and Daw, M.S., Phys. Rev. B 33, 798 (1986).Google Scholar