Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T08:30:38.827Z Has data issue: false hasContentIssue false

A Quantitative Model of the Electrical Activity of Metal Silicide Precipitates in Silicon Based on the Schottky Effect

Published online by Cambridge University Press:  21 March 2011

Teh Y. Tan
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University Durham, NC 27708-0300
Pavel S. Plekhanov
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University Durham, NC 27708-0300
Get access

Abstract

A quantitative model of the electrical activity of metallic precipitates in Si is presented. An emphasis is placed on the properties of the Schottky junction at the precipitate-Si interface, as well as the carrier diffusion and drift in the Si space charge region. Carrier recombination rate is found to be primarily determined by the thermionic emission charge transport process across the Schottky junction rather than the surface recombination process. It is shown that the precipitates can have a very large minority carrier capture cross-section.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Istratov, A. A., Hieslmair, H., Weber, E. R., Appl. Phys. A, 69, 1344 (1999).Google Scholar
[2] Rotondaro, A. L. P., Hurd, T. Q., Kaniava, A., Vanhellemont, J., Simoen, E., Heyns, M. M., Claeys, C., Brown, G., J. Electrochem. Soc., 143, 30143019 (1996).Google Scholar
[3] Kittler, M., Ulhaq-Bouillet, C., Higgs, V., J. Appl. Phys., 78, 4573–83 (1995).Google Scholar
[4] Riedel, F., Kronewitz, J., Gnauert, U., Seibt, M., Schroter, W., Diffusion and Defect Data Part B (Solid State Phenomena), 47–48, 359–64 (1996).Google Scholar
[5] Lee, D. M., Maher, D. M., Shimura, F., Rozgonyi, G. A., in “Semiconductor Silicon 1990”, editors Huff, H. R. and Chikawa, J. (The Electrochemical Society, Pennington, NJ, 1990), p. 639650.Google Scholar
[6] Maurice, J.-L., Colliex, C., Appl. Phys. Lett., 55, 241243 (1989).Google Scholar
[7] Kittler, M., Seifert, W., Radzimski, Z. J., Appl. Phys. Lett., 62, 2513–15 (1993).Google Scholar
[8] Brantley, W. A., Lorimor, O. G., Dapkus, P. D., Haszko, S. E., Saul, R. H., J. Appl. Phys., 46, 26292637 (1975).Google Scholar
[9] Card, H. C., Yang, E. S., IEEE Trans. Electron Devices, ED–24, 397402 (1977).Google Scholar
[10] Pauw, P. De, Mertens, R., Overstraeten, R. Van, Jain, S. C., Solid-State Electron., 27, 573–87 (1984).Google Scholar
[11] Kittler, M., Larz, J., Seifert, W., Seibt, M., Schroter, W., Appl. Phys. Lett., 58, 911913 (1991).Google Scholar
[12] Istratov, A. A., Hedemann, H., Seibt, M., Vyvenko, O. F., Schroter, W., Heiser, T., Flink, C., Hieslmair, H., Weber, E. R., J. Electrochem. Soc., 145, 3889–98 (1998).Google Scholar
[13] Donolato, C., Semicond. Sci. Technol., 7, 3743 (1992).Google Scholar
[14] Seifert, W., Kittler, M., Seibt, M., Buczkowski, A., Solid State Phenomena, 47–48, 365370 (1996).Google Scholar
[15] Plekhanov, P. S., Tan, T. Y., Appl. Phys. Lett., 76, 37773779 (2000).Google Scholar
[16] Plekhanov, P. S., Gafiteanu, R., Gosele, U. M., Tan, T. Y., J. Appl. Phys., 86, 24532458 (1999).Google Scholar