Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T17:32:22.173Z Has data issue: false hasContentIssue false

Palaeospheniscus patagonicus (Aves, Sphenisciformes): new discoveries from the Early Miocene of Argentina

Published online by Cambridge University Press:  20 May 2016

Carolina Acosta Hospitaleche
Affiliation:
1División Paleontología Vertebrados. Museo de La Plata, Paseo del Bosque s/nro, 1900 La Plata, Argentina, 2CONICET
Liliana Castro
Affiliation:
3Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, 1 piso, 1428 Buenos Aires
Claudia Tambussi
Affiliation:
1División Paleontología Vertebrados. Museo de La Plata, Paseo del Bosque s/nro, 1900 La Plata, Argentina, 2CONICET
Roberto A. Scasso
Affiliation:
2CONICET

Abstract

The penguin skeleton studied here constitutes the fourth partial skeleton found in Patagonia, and the third one with an associated humerus and tarsometatarsus. The finding of this partial skeleton identified with certainty as Palaeospheniscus patagonicus Moreno and Mercerat, 1891 (Aves, Sphenisciformes) allows the first description of elements other than the tarsometatarsus. The material comes from the basal sector of the Gaiman Formation (Early Miocene), located along the Atlantic coast of Chubut Province, south of Rawson city. This unit comprises a succession of shales, fine tuffs, sandstones, tuffaceous sandstones, and coquinas deposited in a shallow marine environment. These beds contain abundant marine vertebrates (sharks, dolphins, rays, birds), mollusk casts, and oyster beds. The skeleton includes: rostrum, two thoracic vertebrae, right coracoid without the distal end, left humerus, right femur, right tarsometatarsus, left fragmentary scapula, left coracoid, left radius without the distal end, proximal portion of left ulna, proximal end of left femur, and preacetabular part of the synsacrum. P. patagonicus would have been a medium-sized penguin weighing about 5 kg that inhabited the breeding colonies established in the nearby Bryn Gwyn area during the early Miocene. Despite the abundance of penguin remains known for Argentina, and the fact that they are among the birds with a better fossil record, this skeleton is an exceptional case. This finding allows a readjustment of the taxonomic criteria applicable to fossil and living species.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acosta Hospitaleche, C. 2004. Los pingüinos (Aves, Sphenisciformes) fósiles de Argentina. Sistemática, biogeografía y evolución. Unpublished Ph.D. dissertation. Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, 321 pp.Google Scholar
Acosta Hospitaleche, C. 2005. Systematic revision of Arthrodytes Ameghino, 1905 (Aves, Spheniscidae) and its assignment to the Paraptenodytinae. Neues Jahrbuch für Geologie und Paläontologie, 7:404414.CrossRefGoogle Scholar
Acosta Hospitaleche, C. 2007. Revisión sistemática de Palaeospheniscus biloculata (Simpson) nov. comb. (Aves, Spheniscidae) de la Formación Gaiman (Mioceno Temprano), Chubut, Argentina. Ameghiniana, 44:417426.Google Scholar
Acosta Hospitaleche, C., Degrange, F., Tambussi, C., Corrado, N., and Rustán, J. J. 2006a. Evaluación de los caracteres del húmero de los pingüinos actuales y fósiles para su uso con fines sistemáticos. Ornitología Neotropical, 17:8194.Google Scholar
Acosta Hospitaleche, C. and Gasparini, G. 2006. Evaluación de caracteres craneales y mandibulares en los Spheniscidae con fines sistemáticos. Ornitología Neotropical, 17:235241.Google Scholar
Acosta Hospitaleche, C. and Gasparini, G. 2007. Evaluación de los caracteres del tarsometatarso de los Spheniscidae con fines sistemáticos. Ornitología Neotropical, 18:277284.Google Scholar
Acosta Hospitaleche, C., Tambussi, C., and Cozzuol, M. 2004. Eretiscus tonnii Simpson 1981 (Aves, Sphenisciformes): Materiales adicionales, status taxonómico y distribución geográfica. Revista del Museo Argentino de Ciencias Naturales, 6:632637.Google Scholar
Acosta Hospitaleche, C., Canto, J., and Tambussi, C. 2006b. Pingüinos (Aves, Spheniscidae) en Coquimbo (Mioceno Medio–Plioceno Tardío), Chile y su vinculación con las corrientes oceánicas. Revista Española de Paleontología, 21:115121.Google Scholar
Acosta Hospitaleche, C. and Tambussi, C. 2006. Skull morphometry of Pygoscelis (Sphenisciformes): Inter- and intraspecific variations. Polar Biology, 29:728734.Google Scholar
Acosta Hospitaleche, C., Tambussi, C., Donato, M., and Cozzuol, M. 2007. A new miocene penguin from Patagonia and a phylogenetic analysis of living and fossil species. Acta Paleontologica Polonica, 52:299314.Google Scholar
Ardolino, A., Franchi, M., Remesal, M., and Salani, F. 1999. La sedimentación y el volcanismo terciarios en la Patagonia extraandina. 2. El volcanismo en la Patagonia extraandina, p. 579612. In Caminos, R. (ed.), Geología Argentina. Instituto de Geología y Recursos Minerales, Buenos Aires.Google Scholar
Baumel, J. and Witmer, L. M. 1993. Osteologia, p. 45132. In Baumel, J. J., King, A. S., Lucas, A. M., Breazile, J. E., and Evans, H. E. (eds.), Handbook of Avian Anatomy. Nomina Anatomica Avium, Cambridge University Press, Cambridge.Google Scholar
Bellosi, E. 1995. Paleogeografía y cambios ambientales de la Patagonia Central durante el Terciario medio. YPF Boletín de Informaciones Petroleras, 44:5083.Google Scholar
Bertelli, S. and Giannini, N. P. 2005. Phylogeny of extant penguins (Aves: Sphenisciformes) combining morphology and mitochondrial sequences. Cladistics, 21:209239.Google Scholar
Bertelli, S., Giannini, N. P., and Ksepka, D. 2006. Redescription and phylogenetic position of the Early Miocene penguin Paraptenodytes antarcticus from Patagonia. American Museum Novitates, 3525:136.Google Scholar
Campbell, E. Jr. and Marcus, L. 1988. The relationship of hindlimb bone dimensions to body weight in birds, p. 395412. In Campbell, K. Jr. (ed.), Papers in Avian Paleontology, honoring Pierce Bordkorb. Natural History Museum of Los Angeles County Science Series No. 36, Los Angeles.Google Scholar
Flynn, J. J. and Swisher, C. C. 1995. Cenozoic South American Land Mammal Ages: Correlation to global geochronologies, p. 317333. In Berggren, W. A., Kent, D. V., and Aubry, M. P. (eds.), Geochronology, Time Scales and Global Stratigraphic Correlation. Society of Economic Mineralogists and Geologists Special Publication, 54.Google Scholar
Goloboff, P. A., Farris, J. S., Källersjö, M., Oxelman, B., Ramírez, M., and Szumik, C. A. 2003. Improvements to resampling measures of group support. Cladistics, 19:324332.Google Scholar
Jadwiszczak, P. 2001. Body size of Eocene Antarctic penguins. Polish Polar Research, 22:147158.Google Scholar
Jadwiszczak, P. 2006a. Eocene penguins of Seymour Island, Antarctica: Taxonomy. Polish Polar Research, 27:362.Google Scholar
Jadwiszczak, P. 2006b. Eocene penguins of Seymour Island, Antarctica: The earliest record. Taxonomic problems and some evolutionary considerations. Polish Polar Research, 27:287302.Google Scholar
Ksepka, T., Bertelli, S., and Giannini, N. P. 2006. The phylogeny of the living and fossil Sphenisciformes (penguins). Cladistics, 22:412441.Google Scholar
Legarreta, L. and Uliana, M. A. 1994. Asociaciones de fósiles y hiatos en el supracretácico-neógeno de Patagonia: Una perspectiva estratigráficosecuencial. Ameghiniana, 31:257281.Google Scholar
Livezey, B. C. 1989. Morphometric patterns in Recent and fossil penguins (Aves, Sphenisciformes). Journal of the Linnean Society of London, 219: 269307.Google Scholar
Malumián, N. 1999. La sedimentación y el volcanismo terciario en la Patagonia extraandina. 1. La sedimentación en la Patagonia extraandina, p. 557578. In Caminos, R. (ed.), Geología Argentina. Instituto de Geología y Recursos Minerales, Buenos Aires.Google Scholar
Marples, B. J. 1952. Early Tertiary penguins of New Zealand. Geological Survey Paleontological Bulletin, 20:166.Google Scholar
Marples, B. J. 1960. A fossil penguin from the Late Tertiary of North Canterbury. Records of the Canterbury Museum, 7:185195.Google Scholar
Martill, D. M. 1985. The preservation of marine vertebrates in the Lower Oxford Clay (Jurassic) of central England, p. 155165. In Whittington, H. B. and Conway Morris, S. (eds.), Extraordinary Fossil Biotas; Their Ecological and Evolutionary Significance. Philosophical Transactions of the Royal Society of London B, 311.Google Scholar
Mayr, G. 2004. Tertiary plotopterids (Aves, Plotopteridae) and a novel hypothesis on the phylogenetic relationships of penguins (Spheniscidae). Journal of Zoological Systematics and Evolutionary Research, 43:6171.Google Scholar
Mayr, G. and Clarke, J. A. 2003. The deep divergences of neornithine birds: A phylogenetic analysis of morphological characters. Cladistics, 19: 527553.CrossRefGoogle ScholarPubMed
Mendia, J. E. and Bayarsky, A. 1981. Estratigrafía del Terciario en el Valle inferior del Río Chubut. Abstracts VIII Congreso Geológico Argentino, San Luis, 3:593606.Google Scholar
Nixon, K. C. 1999-2002. WinClada version 1.0000 Published by the author, Ithaca, New York, USA.Google Scholar
O'Hara, R. 1989. Systematics and the study of natural history, with an estimate of the phylogeny of the living penguins (Aves: Spheniscidae). Unpublished Ph.D. dissertation. Harvard University, 171 pp.Google Scholar
Palazzesi, L. and Barreda, V. 2005. Comunidades florísticas miocenas de Península Valdés: Evidencias palinológicas. Abstracts Reunión anual de comunicaciones y Simposio del 50° aniversario de la Asociación Paleontológica Argentina; 1o Simposio de Paleontología y Geología de Península Valdés, 1:21.Google Scholar
Palazzesi, L., Barreda, V., and Scasso, R. A. 2006. Early Miocene spore and pollen record of the Gaiman Formation (Northeastern Patagonia, Argentina): Correlations and paleoenvironment implications. Abstracts 4° Congreso Latinoamericano de Sedimentología and 11° Reunión Argentina de Sedimentología, San Carlos de Bariloche, Argentina, 1:161.Google Scholar
Parras, A. and Casadío, S. 2005. Taphonomy and sequence stratigraphic significance of oyster-dominated concentrations from the San Julián Formation, Oligocene of Patagonia, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 217:4766.Google Scholar
Parras, A. and Casadío, S. 2006. The Oyster Crassostrea? hatcheri (Ortmann, 1897), a Physical Ecosystem Engineer from the Upper Oligocene-Lower Miocene of Patagonia, Southern Argentina. Palaios, 21:168186.Google Scholar
Pycraft, W. P. 1898. Contributions to the osteology of birds, Pt. II, Impennes. Proceedings of the Zoological Society of London, 958989.Google Scholar
Scasso, R. A. and Castro, L. N. 1999. Cenozoic phosphatic deposits in North Patagonia, Argentina. Phosphogenesis, sequence-stratigraphy and paleoceanography: Journal of South American Earth Sciences, 12:471487.Google Scholar
Scasso, R. A., Castro, L. N., and Tófalo, O. R. 2000. Phosphogenesis, sequence-stratigraphy and paleoceanography in Gaiman Formation phosphates, Argentina. Abstract 2344 y Sesiones de Posters. 31st International Geological Congress, Río de Janeiro, Brasil. Symposium of Authigenic minerals in marine and continental environments. Actas en CD-ROM.Google Scholar
Scasso, R. A., Mcarthur, J. M., Del Río, C. J., Martínez, S., and Thirlwall, M. F. 2001. 87Sr/86Sr Late Miocene age on fossil molluscs of the “Entrerriense” at Valdes Peninsula, Chubut, Argentina. Journal of South American Earth Sciences, 14:319329.Google Scholar
Simpson, G. G. 1935. Early and Middle Tertiary geology of the Gaiman Region, Chubut, Argentina. American Museum Novitates, 775:129.Google Scholar
Simpson, G. G. 1941. Large Pleistocene felines of North America. American Museum Novitates, 1136:128.Google Scholar
Simpson, G. G. 1946. Fossil penguins: Bulletin of the American Museum of Natural History, 87:1100.Google Scholar
Simpson, G. G. 1972. Conspectus of Patagonian fossil penguins. American Museum Novitates, 2488:137.Google Scholar
Simpson, G. G. 1981. Notes on some fossil penguins, including a new genus from Patagonia. Ameghiniana, 18:266272.Google Scholar
Stephan, B. 1980. Philogenese und system der pinguine (Sphenisciformes). Mitteilungen aus dem Zoologichen Museum in Berlin, 56:4149.Google Scholar
Tambussi, C. P., Reguero, M., Marenssi, S., and Santillana, S. 2005. Crossvallia unienwillia, a new Spheniscidae (Sphenisciformes, Aves) from the Late Paleocene of Antarctica. Geobios, 38:667675.Google Scholar
Van Tuinen, M., Butvill, D. B., Kirsh, J. A., and Hedges, S. B. 2001. Convergence and divergence in the evolution of aquatic birds. Proceedings of the Royal Society of London. B, 268:13451350.Google Scholar
Williams, T. D. 1995. The penguins. Spheniscidae. Bird Families of the World. Oxford University Press, 295 p.Google Scholar
Windhausen, A. 1924. Líneas generales de la constitución geológica de la región situada al oeste del Golfo San Jorge. Boletín de la Academia Nacional de Ciencias de Córdoba, 27:167320.Google Scholar
Zusi, R. L. 1975. An interpretation of skull structure in penguins, p. 5984. In Stonehouse, B. (ed.), The Biology of Penguins. London & Basingstoke. Macmillan Press.Google Scholar