Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-29T08:54:13.442Z Has data issue: false hasContentIssue false

Planktic 14C Plateaus: A Result of Short-Term Sedimentation Pulses?

Published online by Cambridge University Press:  14 December 2016

Sven Balmer*
Affiliation:
Institute of Geosciences, University of Kiel, Olshausenstr. 40, 24118 Kiel, Germany
Michael Sarnthein
Affiliation:
Institute of Geosciences, University of Kiel, Olshausenstr. 40, 24118 Kiel, Germany Institute of Geology, Innsbruck University, Innrain 50, 6020 Innsbruck, Austria
*
*Corresponding author. Email: balmer@gpi.uni-kiel.de.

Abstract

The tuning of plateaus in glacial and deglacial planktic radiocarbon records to pertinent structures in the atmospheric 14C record of Lake Suigetsu results in both a record of surface water reservoir ages and a centennial-scale absolute age model. However, the atmospheric origin of planktic 14C plateaus may be questioned. Alternatively, plateaus may result from short pulses of increased hemipelagic sediment deposition, which challenges the technique of 14C plateau tuning. To test the two rationales for the interval 23–12 cal ka, we calculated hypothetical sedimentation rates for all 14C plateaus identified in five Atlantic sediment cores assuming sediment pulses that either span 10, 100, 200, or 300 yr each. These rates were compared to rates derived by 14C plateau tuning that assumes an atmospheric origin of the plateaus. In each plateau suite, our hypothetical sedimentation rates result in at least one or two cases in extreme values that exceed the rates reported for short-lasting pulses of sediment deposition in contourites by a factor of 50 and therefore appear unrealistic. Moreover, they result in entire suites of plateau structures that incidentally appear closely aligned to the pattern of atmospheric 14C plateau suites rather than to any pulses of climate-controlled sediment discharge.

Type
Research Article
Copyright
© 2016 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bacon, MP. 1984. Glacial to interglacial changes in carbonate and clay sedimentation in the Atlantic Ocean estimated from 230Th measurements. Chemical Geology 46(2):97111.CrossRefGoogle Scholar
Balmer, S, Sarnthein, M, Mudelsee, M, Grootes, PM. 2016. Refined modeling and 14C plateau tuning reveal consistent patterns of glacial and deglacial 14C reservoir ages of surface waters in low-latitude Atlantic. Paleoceanograph 31(8):10301040.CrossRefGoogle Scholar
Bronk Ramsey, C, Staff, RA, Bryant, CL, Brock, F, Kitagawa, H, van der Plicht, J, Schlolaut, G, Marshall, MH, Brauer, A, Lamb, HF. 2012. A complete terrestrial radiocarbon record for 11.2 to 52.8 kyr BP. Science 338(6105):370374.Google Scholar
Bryn, P, Berg, K, Stoker, MS, Haflidason, H, Solheim, A. 2005. Contourites and their relevance for mass wasting along the Mid-Norwegian Margin. Marine and Petroleum Geology 22(1):8596.Google Scholar
Bühring, C, Sarnthein, M, Erlenkeuser, H. 2004. Toward a high-resolution stable isotope stratigraphy of the last 1.1 my: Site 1144, South China Sea. In: Prell WL, Wang P, Blum P, Rea DK, Clemens SC, editors. Proceedings ODP, Scientific Results 184:129.Google Scholar
Came, RE, Oppo, DW, Curry, WB. 2003. Atlantic Ocean circulation during the Younger Dryas: insights from a new Cd/Ca record from the western subtropical South Atlantic. Paleoceanography 18(4):1086.Google Scholar
Curry WB, and Oppo DW. 2005. Glacial water mass geometry and the distribution of δ13C of ∑CO2 in the western Atlantic Ocean. Paleoceanography 20(1).Google Scholar
Denton, GH, Broecker, WS, Alley, RB. 2006. The mystery interval 17.5 to 14.5 kyrs ago. PAGES News 14(20):1416.Google Scholar
Harrison, SP, Kohfeld, KE, Roelandt, C, Claquin, T. 2001. The role of dust in climate changes today, at the last glacial maximum and in the future. Earth-Science Reviews 54(1):4380.Google Scholar
Hernández-Molina, FJ, Soto, M, Piola, AR, Tomasini, J, Preu, B, Thompson, P, Badalini, G, Creaser, A, Violante, RA, Morales, E. 2015. A contourite depositional system along the Uruguayan continental margin: sedimentary, oceanographic and paleoceanographic implications. Marine Geology 378:333349.Google Scholar
Hughen, KA, Southon, JR, Lehman, SJ, Overpeck, JT. 2000. Synchronous radiocarbon and climate shifts during the last deglaciation. Science 290(5498):19511954.Google Scholar
Jaeschke, A, Rühlemann, C, Arz, H, Heil, G, Lohmann, G. 2007. Coupling of millennial-scale changes in sea surface temperature and precipitation off northeastern Brazil with high-latitude climate shifts during the last glacial period. Paleoceanography 22(4):PA4206.Google Scholar
Jouzel, J, Masson-Delmotte, V, Cattani, O, Dreyfus, G, Falourd, S, Hoffmann, G, Minster, B, Nouet, J, Barnola, J-M, Chappellaz, J, Fischer, H, Gallet, JC, Johnsen, S, Leuenberger, M, Loulergue, L, Luethi, D, Oerter, H, Parrenin, F, Raisbeck, G, Raynaud, D, Schilt, A, Schwander, J, Selmo, E, Souchez, R, Spahni, R, Stauffer, B, Steffensen, JP, Stenni, B, Stocker, TF, Tison, JL, Werner, M, Wolff, EW. 2007. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317(5839):793796.Google Scholar
Marcott, SA, Bauska, TK, Buizert, C, Steig, EJ, Rosen, JL, Cuffey, KM, Fudge, T, Severinghaus, JP, Ahn, J, Kalk, ML, McConnel, JR, Sowers, T, Taylor, KC, White, JWC, Brook, EJ. 2014. Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature 514(7524):616619.CrossRefGoogle ScholarPubMed
Nydal, R, Lovseth, K, Skogseth, FH. 1980. Transfer of bomb 14C to the ocean surface. Radiocarbon 22(3):626635.Google Scholar
Rasmussen, SO, Bigler, M, Blockley, SP, Blunier, T, Buchardt, SL, Clausen, HB, Cvijanovic, I, Dahl-Jensen, D, Johnsen, SJ, Fischer, H, Gkinis, V, Guillevic, M, Hoek, WZ, Lowe, JJ, Pedro, JB, Popp, T, Seierstad, IK, Steffensen, JP, Svensson, AM, Vallelonga, P, Vinther, BM, Walker, MJC, Wheatley, JJ, Winstrup, M. 2014. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews 106:1428.CrossRefGoogle Scholar
Repschläger, J, Weinelt, M, Kinkel, H, Andersen, N, Garbe-Schönberg, D, Schwab, C. 2015. Response of the subtropical North Atlantic surface hydrography on deglacial and Holocene AMOC changes. Paleoceanography 30:456476.Google Scholar
Sadler, P. 1999. The influence of hiatuses on sediment accumulation rates. GeoResearch Forum 5:1540.Google Scholar
Sarnthein, M, Winn, K, Duplessy, J-C, Fontugne, MR. 1988. Global variations of surface ocean productivity in low and mid latitudes: influence on CO2 reservoirs of the deep ocean and atmosphere during the last 21,000 years. Paleoceanography 3(3):361399.CrossRefGoogle Scholar
Sarnthein, M, Pflaumann, U, Weinelt, M. 2003. Past extent of sea ice in the northern North Atlantic inferred from foraminiferal paleotemperature estimates. Paleoceanography 18(2):1047.Google Scholar
Sarnthein, M, Grootes, PM, Kennett, JP, Nadeau, M. 2007. 14C Reservoir ages show deglacial changes in ocean currents and carbon cycle. Geophysical Monograph-American Geophysical Union 173:175196.Google Scholar
Sarnthein, M, Grootes, PM, Holbourn, A, Kuhnt, W, Kuhn, H. 2011. Tropical warming in the timor sea led deglacial Antarctic warming and atmospheric CO2 rise by more than 500 yr. Earth and Planetary Science Letters 302:337348.Google Scholar
Sarnthein, M, Balmer, S, Grootes, PM, Mudelsee, M. 2015. Planktic and benthic 14C reservoir ages for three ocean basins, calibrated by a suite of 14C plateaus in the glacial-to-deglacial Suigetsu atmospheric 14C record. Radocarbon 57(1):129151.Google Scholar
Schlitzer, R. 2015. Ocean Data View. http://odv.awi.de.Google Scholar
Seibold, E, Berger, WH. 1996. The Sea Floor: An Introduction to Marine Geology. Berlin: Springer Science & Business Media.Google Scholar
Shakun, JD, Clark, PU, He, F, Marcott, SA, Mix, AC, Liu, Z, Otto-Bliesner, B, Schmittner, A, Bard, E. 2012. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484(7392):4954.Google Scholar
Shao, L, Li, XJ, Geng, JH, Pang, X, Lei, YC, Qiao, PJ, Wang, LL, Wang, HB. 2007. Deep water bottom current deposition in the northern South China Sea. Science in China Series D-Earth Sciences 50(7):10601066.Google Scholar
Smith, CR, Rabouille, C. 2002. What controls the mixed-layer depth in deep-sea sediments? The importance of POC flux. Limnology and Oceanography 47(2):418426.Google Scholar
Svensson, A, Andersen, KK, Bigler, M, Clausen, HB, Dahl-Jensen, D, Davies, S, Johnsen, JS, Muscheler, R, Parrenin, F, Rasmussen, SO, Röthlisberger, R, Seierstad, L, Steffensen, JP, Vinther, BM. 2008. A 60000 year Greenland stratigraphic ice core chronology. Climate of the Past 4(1):4757.CrossRefGoogle Scholar
Sweeney, C, Gloor, E, Jacobson, AR, Key, RM, McKinley, G, Sarmiento, JL, Wanninkhof, R. 2007. Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements. Global Biogeochemical Cycles 21:GB2015.Google Scholar
Thurman, HV, Burton, EA. 2001. Introductory Oceanography. 9th edition. Englewood Cliffs: Prentice Hall.Google Scholar
Toucanne, S, Mulder, T, Schönfeld, J, Hanquiez, V, Gonthier, E, Duprat, J, Cremer, M, Zaragosi, S. 2007. Contourites of the Gulf of Cadiz: a high-resolution record of the paleocirculation of the Mediterranean outflow water during the last 50,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 246(2):354366.Google Scholar
Trauth, MH, Sarnthein, M, Arnold, M. 1997. Bioturbational mixing depth and carbon flux at the seafloor. Paleoceanography 12(3):517526.CrossRefGoogle Scholar
Vidal, L, Schneider, RR, Marchal, O, Bickert, T, Stocker, TF, Wefer, G. 1999. Link between the North and South Atlantic during the Heinrich events of the last glacial period. Climate Dynamics 15(12):909919.Google Scholar
Wallmann, K, Schneider, B, Sarnthein, M. 2016. Effects of eustatic sea-level change, ocean dynamics, and nutrient utilization on atmospheric pCO2 and seawater composition over the last 130,000 years: a model study. Climate of the Past 12:339375.Google Scholar
Wang, X, Auler, AS, Edwards, RL, Cheng, H, Cristalli, PS, Smart, PL, Richards, DA, Shen, C-C. 2004. Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature 432(7018):740743.Google Scholar
Wetzel, A. 1981. Ökologische und stratigraphische Bedeutung biogener Gefüge in quartären Sedimenten am NW-afrikanischen Kontinentalrand. “Meteor”-Forschungs-Ergebnisse 34:147.Google Scholar
Supplementary material: File

Balmer and Sarnthein supplementary material

Balmer and Sarnthein supplementary material 1

Download Balmer and Sarnthein supplementary material(File)
File 43.8 KB