Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T07:28:48.345Z Has data issue: false hasContentIssue false

Analysis of current density and electric field beneath a bipolar DC wires-to-plane corona discharge in humid air

Published online by Cambridge University Press:  08 March 2013

Massinissa Aissou
Affiliation:
Laboratoire de Génie Electrique, Université A. Mira de Béjaïa, 06000 Béjaïa, Algeria
Hakim Aitsaid
Affiliation:
Laboratoire de Génie Electrique, Université A. Mira de Béjaïa, 06000 Béjaïa, Algeria
Hamou Nouri
Affiliation:
Laboratoire de Génie Electrique, Université A. Mira de Béjaïa, 06000 Béjaïa, Algeria
Youcef Zebboudj*
Affiliation:
Laboratoire de Génie Electrique, Université A. Mira de Béjaïa, 06000 Béjaïa, Algeria
*
Get access

Abstract

This paper aims to analyze the behavior of DC bipolar corona discharge in a two wires-to-plane configuration under variable humid air conditions. A circular biased probe was adapted to the plane and used to measure the ground-plane current density and electric field during the bipolar corona. The values of the electric field and the current density at the plane surface were the maximum beneath the two corona wires which decreased when moving away from them. The current-voltage characteristics followed the quadratic Townsend’s law. The experimental results show that the bipolar corona discharge is strongly affected by the air humidity. The current density and the electric field decrease linearly with the humidity for all the tested wire diameters.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mizuno, A., IEEE Trans. Dielectr. Electr. Insul. 7, 615 (2000)CrossRef
Nouri, H., Zouzou, N., Moreau, E., Dascalescu, L., Zebboudj, Y., J. Electrostat. 70, 20 (2012)CrossRef
Chang, J.S., J. Electrostat. 57, 273 (2003)CrossRef
Podlinski, J., Dekowski, J., Mizeraczyk, J., Brocilo, D., Chang, J.S., J. Electrostat. 64, 259 (2006)CrossRef
Ye, Q., Steigleder, T., Scheibe, A., Domnick, J., J. Electrostat. 54, 189 (2002)CrossRef
Elmoursi, A.A., IEEE Trans. Ind. Appl. 28, 1174 (1992)CrossRef
Jones, J.E., Dupuy, J., Schreiber, G.O.S., Waters, R.T., J. Phys. D: Appl. Phys. 21, 322 (1988)CrossRef
Zebboudj, Y., Hartmann, G., Eur. Phys. J. Appl. Phys. 7, 167 (1999)CrossRef
Zebboudj, Y., Iken, R., Eur. Phys. J. Appl. Phys. 10, 211 (2000)CrossRef
Al-Hamouz, Z.M., IEEE Trans. Ind. Appl. 32, 1266 (1996)CrossRef
Reichel, G.P., Mäkelä, J.M., Karch, R., Necid, J., J. Aerosol Sci. 27, 931 (1996)
Corbellini, U., Pelachi, P., IEEE Trans. Power Deliv. 11, 3 (1996)CrossRef
Kasdi, A., Zebboudj, Y., Yala, H., Eur. Phys. J. Appl. Phys. 37, 323 (2007)CrossRef
Tassicker, O.J., Proc. IEE 121, 213 (1974)
Selim, E.O., Waters, R.T., IEEE Trans. 16, 458 (1980)
Bouziane, A., Hartmann, G., Hidaka, K., Taplamacioglu, M.C., Waters, R.T., IEE Proc.: Sci. Meas. Technol. 141, 111 (1994)
Zebboudj, Y., Ikene, R., Hartmann, G., Eur. Phys. J. Appl. Phys. 6, 195 (1999)CrossRef
Oussalah, N., Zebboudj, Y., Eur. Phys. J. Appl. Phys. 34, 215 (2006)CrossRef
Townsend, J.S., Electricity in Gases (Oxford University Press UK, 1915), pp. 375376Google Scholar
Henson, B.L., J. Appl. Phys. 52, 709 (1981)CrossRef
Yamada, K., J. Appl. Phys. 96, 2472 (2004)CrossRef
Ferreira, G.F., Oliveira, O.N., Giacometti, J.A., J. Appl. Phys. 59, 3045 (1986)CrossRef
Meng, X., Zhang, H., Zhu, J., J. Phys. D: Appl. Phys. 41, 065209 (2008)CrossRef
Warburg, E., Handbuch der Physik, Vol. 14 (Springer, Berlin, 1927), pp. 154155Google Scholar