Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T16:31:36.201Z Has data issue: false hasContentIssue false

Pressure induced phase transitions in AmCm alloy

Published online by Cambridge University Press:  26 February 2011

Sa Li
Affiliation:
sli2@vcu.edu, Virginia Commonwealth University, 1020 W. Main Street, Richmond, VA, 23284, United States, +1-804-828-2770
Rajeev Ahuja
Affiliation:
rajeev@fysik.uu.se, Uppsala University, Department of Physics, Sweden
Borje Johansson
Affiliation:
borje.johansson@fysik.uu.se, Royal Institute of Technology, Department of Materials Science and Engineering, Sweden
Get access

Abstract

We have studied the crystal structure of the AmCm binary alloy under high pressure by means of first-principles self-consistent total-energy calculations using the generalized gradient approximation (GGA) for the density functional theory (DFT). The virtual crystal approximation (VCA) is used for the description of the alloy system. In the present study, we investigated the double hexagonal (P63/mmc) structure, the face centered cubic (Fm3m) structure, the face-centered orthorhombic (Fddd) structure and the primitive orthorhombic (Pnma) structure for the AmCm alloy. Antiferromagnetic calculations have been compared with ferromagnetic calculations for all these phases. Our results are in general good agreement with recent experiment performed by Lindbaum et al. [J. Phys.: Condens. Matter. 15, S2297 (2003)].

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Johansson, B. and Rosengren, A., Phys. Rev. B 11, 2836 (1975).10.1103/PhysRevB.11.2836Google Scholar
2 Smith, J. L. and Haire, R. G., Science 200, 535 (1978).10.1126/science.200.4341.535Google Scholar
3 Griveau, J. C., Rebizant, J., Lander, G. H., and Kotliar, G., Phys. Rev. Lett. 94, 097002 (2005).10.1103/PhysRevLett.94.097002Google Scholar
4 Johansson, B., Philos. Mag. 30, 469 (1974).10.1080/14786439808206574Google Scholar
5 Skriver, H. L., Andersen, O. K., and Johansson, B., Phys. Rev. Lett. 41, 000042 (1978).Google Scholar
6 Skriver, H. L., Andersen, O. K., and Johansson, B., Phys. Rev. Lett. 44, 1230 (1980).Google Scholar
7 Heathman, S., Haire, R. G., Le Bihan, T., Lindbaum, A., Litfin, K., Meresse, Y., and Libotte, H., Phys. Rev. Lett. 85, 2961 (2000).Google Scholar
8 Lindbaum, A., Heathman, S., Litfin, K., Meresse, Y., Haire, R. G., Le Bihan, T., and Libotte, H., Phys. Rev. B 63, 214101 (2001).Google Scholar
9 Penicaud, M., J Phys.: Condens. Matter 17, 257 (2005).Google Scholar
10 Penicaud, M., J Phys.: Condens. Matter 14, 3575 (2002).Google Scholar
11 Soderlind, P. and Landa, A., Phys. Rev. B 72, 024109 (2005).10.1103/PhysRevB.72.024109Google Scholar
12 Soderlind, P., Ahuja, R., Eriksson, O., Johansson, B., and Wills, J. M., Phys. Rev. B 61, 8119 (2000).Google Scholar
13 Benedict, U., Haire, R. G., Peterson, J. R., and Itie, J. P., J. Phys. F: Met. Phys. 15, L29 (1985).Google Scholar
14 Heathman, S., Haire, R. G., Le Bihan, T., Lindbaum, A., Idiri, M., Normile, P., Li, S., Ahuja, R., Johansson, B., and Lander, G. H., Science 309, 110 (2005).Google Scholar
15 Le Bihan, T., Haire, R. G., Heathman, S., Idiri, M. a., and Lindbaum, A., J. Nucl. Sci. Technol.(Suppl. 3), 45 (2002).10.1080/00223131.2002.10875406Google Scholar
16 Lindbaum, A., Heathman, S., Le Bihan, T., Haire, R. G., Idiri, M., and Lander, G. H., J. Phys: Condens. Matter 15, S2297 (2003).Google Scholar
17 Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).10.1103/PhysRevLett.77.3865Google Scholar
18 Nordstrom, L., Wills, J. M., Andersson, P. H., Soderlind, P., and Eriksson, O., Phys. Rev. B 63, 035103 (2000).10.1103/PhysRevB.63.035103Google Scholar
19 Wills, J. M. and Cooper, B. R., Phys. Rev. B 36, 3809 (1987).Google Scholar
20 Price, D. L. and Cooper, B. R., Phys. Rev. B 39, 4945 (1989).10.1103/PhysRevB.39.4945Google Scholar
21 Chadi, D. J. and Cohen, M. L., Phys. Rev. B 8, 5747 (1973).10.1103/PhysRevB.8.5747Google Scholar
22 Naegele, J. R., Manes, L., Spirlet, J. C., and Müller, W., Phys. Rev. Lett. 52, 1834 (1984).10.1103/PhysRevLett.52.1834Google Scholar