Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-18T22:57:19.662Z Has data issue: false hasContentIssue false

Structure of Self-Assembled Fe and FePt Nanoparticle Arrays

Published online by Cambridge University Press:  17 March 2011

S. Yamamuro
Affiliation:
Dept. of Physics, Carnegie Mellon UniversityPittsburgh, PA 15213, U.S.A
D. Farrell
Affiliation:
Dept. of Physics, Carnegie Mellon UniversityPittsburgh, PA 15213, U.S.A
K. D. Humfeld
Affiliation:
Dept. of Physics, Carnegie Mellon UniversityPittsburgh, PA 15213, U.S.A
S. A. Majetich
Affiliation:
Dept. of Physics, Carnegie Mellon UniversityPittsburgh, PA 15213, U.S.A
Get access

Abstract

Arrays were self-assembled by evaporating suspensions of 4 nm FePt or 8 nm Fe nanoparticles. The monolayers had a hexagonal close packed (hcp) structure, but the multilayer structure varied. To identify the multilayer structures, transmission electron microscopy (TEM) images were compared with phase contrast image simulations. The results showed that Fe could be grown as both hcp and face-centered cubic (fcc), or fcc-like, structures. The results of image analysis of the FePt arrays were consistent with fcc structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Martin, J. E., Anderson, R. A., and Tigges, C. P., J. Chem. Phys., 108, 3765 (1998).Google Scholar
2. Sun, S., Murray, C. B., Weller, D., Folks, L., Moser, A., Science, 287, 1989 (2000).Google Scholar
3. Bentzon, M. D. and Tholen, A. R., Ultramicroscopy, 38, 105 (1991).Google Scholar
4. Yin, J. S. and Wang, Z. L., Phys. Rev. Lett., 79, 2570 (1997).Google Scholar
5. Murray, C. B., Kagan, C. R., and Bawendi, M. G., Science, 270 1335 (1995).Google Scholar
6. Wang, Z. L., Adv. Mater., 10 (1), 13 (1998).Google Scholar
7. Whetten, R. L., Khoury, J. T., Alvarez, M. M., Murthy, S., Vezmar, I., Wang, Z. L., Stephens, P. W., Cleveland, C. L., Luedtke, W. D., and Landmar, U., Adv. Mater., 8 (5), 428 (1996).Google Scholar
8. Mer, V. K. La and Dinegar, R. H., J. Am. Chem. Soc., 72, 4847 (1950).Google Scholar
9. Murray, C. B., Norris, D. J., and Bawendi, M. G., J. Am. Chem. Soc., 115, 8706 (1993).Google Scholar
10. Suslick, K. S., Choe, S. B., Cichowlas, A. A., and Grinstaff, M. W., Nature, 353, 414 (1991).Google Scholar
11. Viau, G., Fievet-Vincent, F., and Fievet, F., J. Mater. Chem., 6 1047 (1996).Google Scholar
12. Wilcoxon, J. P. and Provencio, P. P., J. Phys. Chem. B, 103, 9809 (1999).Google Scholar
13. Spence, J. P. J. C. H., Experimental High-Resolution Electron Microscopy, 2nd ed. (Oxford University Press, New York, 1988) p. 116.Google Scholar