Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T10:02:43.446Z Has data issue: false hasContentIssue false

Metamorphic evolution of Palaeoproterozoic anatectic migmatites in the eastern part of the Aravalli–Delhi Fold Belt, India: constraints from thermodynamic modelling and monazite dating

Published online by Cambridge University Press:  06 March 2017

A. PRAKASH
Affiliation:
Department of Earth Sciences, Indian Institute of Technology Roorkee, 247667 Roorkee, India
L. SAHA*
Affiliation:
Department of Earth Sciences, Indian Institute of Technology Roorkee, 247667 Roorkee, India
I. PETRIK
Affiliation:
Earth Science Institute of the Slovak Academy of Sciences, 84005 Bratislava, Slovak Republic
M. JANAK
Affiliation:
Earth Science Institute of the Slovak Academy of Sciences, 84005 Bratislava, Slovak Republic
A. BHATTACHARYA
Affiliation:
Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, 721302 Kharagpur, India
*
Author for correspondence: saha.lopamudra@gmail.com

Abstract

Garnetiferous pelitic to psammopelitic migmatites widespread across the central and eastern part of the Aravalli–Delhi Fold Belt in NW India record two distinct orogenies, e.g. the Aravalli Orogeny (1.7–1.6 Ga) and the Delhi Orogeny (1.0 Ga). In this study, we integrate field geological studies with textural and mineral–chemical analyses, P–T pseudosection modelling and in situ monazite dating in anatectic migmatites in the Aravalli Supergroup occurring along the Deoli–Shahpura segment. The study reveals formation of peak assemblages of garnet + sillimanite + biotite + K-feldspar + melt and garnet + muscovite + K-feldspar + melt in two anatectic migmatite samples. P–T pseudosection modelling suggests that anatexis in the gneisses occurred at ~8 kbar and 700–800°C along a tight-loop clockwise P–T path. Monazite ages from the migmatites indicate that the anatexis occurred at ~1.73–1.74 Ga. This age is similar to the Palaeoproterozoic anatexis (at 7–8 kbar) and charnockite emplacement in the Sandmata and the Mangalwar complexes, the subsolidus amphibolite-facies metamorphism in the Rajpura–Dariba and Pur–Banera supracrustal belts, and the A-type granite magmatism in the North Delhi Fold Belt. We propose that the Palaeoproterozoic migmatites in central and eastern Rajasthan are part of the one crustal unit that underwent anatexis during an accretion event along the NE–SW-trending Aravalli orogenic belt.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

auzanneau, E., Schmidt, M. W., Vielzeuf, D. & Connolly, J. A. D. 2010. Titanium in phengite: a geobarometer for high temperature eclogites. Contributions to Mineralogy and Petrology 159, 124.CrossRefGoogle Scholar
Benisek, A., Dachs, E. & Kroll, H. 2010. A ternary feldspar-mixing model based on calorimetric data: development and application. Contributions to Mineralogy and Petrology 160, 327–37.Google Scholar
Bhattacharya, A., Mohanty, L., Maji, A., Sen, S. K. & Raith, M. 1992. Non-ideal mixing in the phlogopite-annite boundary: constraints from experimental data on Mg-Fe partitioning and a reformulation of the biotite-garnet geothermometer. Contributions to Mineralogy and Petrology 111, 8793.Google Scholar
Bhowmik, S. K., Bernhardt, H.-J. & Dasgupta, S. 2010. Grenvillian age high pressure upper amphibolite–granulite metamorphism in the Aravalli–Delhi Mobile Belt, Northwestern India: new evidence from monazite chemical age and its implication. Precambrian Research 78, 168–84.Google Scholar
Bhowmik, S. K. & Dasgupta, S. 2012. Tectonothermal evolution of the Banded Gneissic Complex in central Rajasthan, NW India: present status and correlation. Journal of Asian Earth Sciences 49, 339–48.Google Scholar
Biju-Sekhar, S., Yokoyama, K., Pandit, M. K., Okudaira, T., Yoshida, M. & Santosh, M. 2003. Late Paleoproterozoic magmatism in Delhi Fold Belt, NW India and its implication: evidence from EPMA chemical ages of zircons. Journal of Asian Earth Sciences 22, 189207.Google Scholar
Bose, U. & Sharma, A. K. 1992. The volcanic sedimentary association of the Precambrian Hindoli Supracrustals in south-east Rajasthan. Journal of the Geological Society of India 40, 359–69.Google Scholar
Buick, I. S., Allen, C., Pandit, M., Rubatto, D. & Hermann, J. 2006. The Proterozoic magmatic and metamorphic history of the Banded Gneiss Complex, central Rajasthan, India: LA-ICP-MS U–Pb zircon constraints. Precambrian Research 151, 119–42.CrossRefGoogle Scholar
Buick, I. S., Clark, C., Rubatto, D., Hermann, J., Pandit, M. K. & Hand, M. 2010. Constraints on the Proterozoic evolution of the Aravalli–Delhi Orogenic belt (NW India) from monazite geochronology and mineral trace element geochemistry. Lithos 120, 511–28.Google Scholar
Choudhary, A. K., Gopalan, K. & Sastry, C. A. 1984. Present status of the geochronology of the Precambrian rocks of Rajasthan. Tectonophysics 105, 131–40.Google Scholar
Cocherie, A. & Albarede, F. 2001. An improved U-Th-Pb age calculation for electron microprobe dating of monazite. Geochimica et Cosmochimica Acta 24, 4509–22.Google Scholar
Coggon, R. & Holland, T. J. B. 2002. Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. Journal of Metamorphic Geology 20, 683–96.CrossRefGoogle Scholar
Connolly, J. A. D. 2005. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth and Planet Science Letters 236, 524–41.Google Scholar
Crawford, A. R & Compston, W. 1970. The age of the Vindhyan system of Peninsular India. Quarterly Journal of the Geological Society, London 125, 351–72.CrossRefGoogle Scholar
Dasgupta, S., Sengupta, P., Guha, D. & Fukuoka, M. 1991. A refined garnet-biotite Fe-Mg exchange geothermometer and its application in amphibolites and granulites. Contributions to Mineralogy and Petrology 109, 130–7.Google Scholar
Deb, M., Thorpe, R. I., Cumming, G. L. & Wagner, P. A. 1989. Age, source and stratigraphic implications of Pb isotope data for conformable, sediment-hosted, base metal deposits in the Proterozoic Aravalli-Delhi orogenic belt, northwestern India. Precambrian Research 43, 122.Google Scholar
Deb, M. & Sarkar, S. C. 1990. Proterozoic tectonic evolution and metallogenesis in the Aravalli-Delhi orogenic complex, northwestern India. Precambrian Research 46, 115–37.Google Scholar
Deb, M., Thorpe, R. I. & Krstic, D. 2002. Hindoli Group of rocks in the eastern fringe of the Aravalli–Delhi orogenic belt – Archean secondary greenstone belt or Proterozoic supracrustals? Gondwana Research 5, 879–83.CrossRefGoogle Scholar
Deb, M. & Thorpe, R. I. 2004. Geochronological constraints in the Precambrian geology of Rajasthan and their metallogenic implications. In Sediment-Hosted Lead–Zinc Sulphide Deposits (eds Deb, M. & Goodfellow, W. D.), pp. 246–63. New Delhi: Narosa Publishing House.Google Scholar
Engi, M. & Wersin, X. 1987. Something to do with grandite garnet. SMPM.Google Scholar
Fareeduddin, & Kröner, A. 1998. Single zircon age constraints on the evolution of Rajasthan granulite. In The Indian Precambrian (ed. Paliwal, B. S.), pp. 547–56. Jodhpur: Scientific Publishers (India).Google Scholar
Ferry, J. M. & Spear, F. S. 1978. Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contributions to Mineralogy and Petrology 66, 113–17.Google Scholar
Gopalan, K., Macdougall, J. D., Roy, A. B. & Murli, A. V. 1990. Sm–Nd evidence for 3.3 Ga old rocks in Rajasthan, northwestern India. Precambrian Research 48, 287–97.Google Scholar
Goswami, J. N., Wiedenbeck, M. & Roy, A. B. 1994. Single zircon ages from the Precambrian basement of the southern Aravalli Mountains (Rajasthan, India). In Abstract 8th International Conference on Geochronology Cosmochronology and Isotope Geology (eds Lanphere, M. A., Dalrymple, G. B. & Turin, B. D.), p. 115. United States Geological Survey Circular C-1107.Google Scholar
Gregory, L. C., Meert, J. G., Binge, B., Pandit, M. K. & Torsvik, T. H. 2009. Paleomagnetism and geochronology of the Malani Igneous Suite, Northwest India: implications for the configuration of Rodinia and the assembly of Gondwana. Precambrian Research 170, 1326.Google Scholar
Guha, D. B & Garkhal, R. S. 1993. Early Proterozoic Aravalli metasediments and their relation with the Ahar River Granite around Udaipur, Rajasthan. Journal of the Geological Society of India 42, 327–35.Google Scholar
Gupta, S. N., Arora, Y. K., Mathur, R. K., Iqballuddin Prasad, B., Sahai, T. N. & Sharma, S. B. 1980. Lithostratigraphic Map of Aravalli Region. Hyderabad: Geological Survey of India.Google Scholar
Hazarika, P., Upadhyay, D. & Mishra, B. 2013. Contrasting geochronological evolution of the Rajpura–Dariba and Rampura-Agucha metamorphosed Zn–Pb deposit, Aravalli–Delhi Belt, India. Journal of Asian Earth Sciences 73, 329–39.Google Scholar
Henry, D. J., Guidotti, C. V. & Thomson, J. A. 2005. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: implications for geothermometry and Ti-substitution mechanisms. American Mineralogist, 90, 316–28.CrossRefGoogle Scholar
Heron, A. M. 1953. Geology of Central Rajputana. Memoirs of the Geological Survey of India 79, 389.Google Scholar
Holdaway, M. J. 2000. Application of new experimental and garnet Margules data to the garnet–biotite geothermometer. American Mineralogist 85, 881–92.Google Scholar
Holland, T. J. B. & Powell, R. 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology 16, 309–43.Google Scholar
Holland, T. J. B. & Powell, R. 2001. Calculation of phase relations involving haplogranitic melts using an internally consistent thermodynamic dataset. Journal of Petrology 42, 673–83.Google Scholar
Johnson, T. & Brown, M. 2004. Quantitative constraints on metamorphism in the Variscides of southern Brittany – a complementary pseudosection approach. Journal of Petrology 45, 1237–59.Google Scholar
Kaur, P., Chaudhri, N., Biju-Sekhar, S. & Yokoyama, K. 2006. Electron probe micro analyser chemical zircon ages of the Khetri granitoids, Rajasthan, India: records of widespread late Palaeoproterozoic extension-related magmatism. Current Science 90, 6573.Google Scholar
Kaur, P., Chaudhri, N., Raczek, I., Kröner, A. & Hofmann, A. W. 2007. Geochemistry, zircon ages and whole-rock Nd isotopic systematics for Palaeoproterozoic A-type granitoids in the northern part of the Delhi belt, Rajasthan, NW India: implications for late Palaeoproterozoic crustal evolution of the Aravalli craton. Geological Magazine 144, 361–78.Google Scholar
Kaur, P., Chaudhri, N., Raczek, I., Kroner, A. & Hofmann, A. W. 2009. Record of 1.82 Ga Andean-type continental arc magmatism in NE Rajasthan, India: insights from zircon and Sm–Nd ages, combined with Nd–Sr isotope geochemistry. Gondwana Research 16, 5671.Google Scholar
Kaur, P., Chaudhri, N., Raczek, I., Kroner, A., Hofmann, A. W. & Okrusch, M. 2011 a. Zircon ages of late Palaeoproterozoic (ca. 1.72–1.70 Ga) extension-related granitoids in NE Rajasthan, India: regional and tectonic significance. Gondwana Research 19, 1040–53.Google Scholar
Kaur, P., Zeh, A., Chaudhri, N., Gerdes, A. & Okrusch, M. 2011 b. Archaean to Palaeoproterozoic crustal evolution of the Aravalli orogen, NW India, and its hinterland: the U–Pb and Hf isotope record of detrital zircon. Precambrian Research 187, 155–64.CrossRefGoogle Scholar
Kelsey, D. E., White, R. W., Wilson, C. J. L. & Quinn, C. D. 2003. New constraints on metamorphism in the Rauer Group, Prydz Bay, east Antarctica. Journal of Metamorphic Geology 21, 739–59.CrossRefGoogle Scholar
Lopez, R., Mukhopadhyay, D., Bhattacharyya, T. & Tobisch, O. T. 1996. Proterozoic rim and core zircon ages for the Anasagar Gneiss, Central Rajasthan, India. Geological Society of America, Abstract with Programs 28, A-492.Google Scholar
Ludwig, K. R. 2001. User Manual for Isoplot/Ex ver. 2.49. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication 1a, 56 pp.Google Scholar
MacDougall, J. D., Gopalan, K., Lugmair, G. W. & Roy, A. B. 1983. The Banded Gneissic Complex of Rajasthan, India: early crust from a depleted mantle at ~3.5 Ga? EOS Transactions American Geophysical Union 64, 351–60.Google Scholar
McKenzie, N. R., Hughes, N. C., Myrow, P. M., Banerjee, D. M., Deb, M. & Planavsky, N. J. 2013. New age constraints for the Proterozoic Aravalli–Delhi successions of India and their implications. Precambrian Research 238, 120–8.Google Scholar
Mukhopadhyay, D., Bhattacharyya, T., Chattopadhyay, N., Lopez, R. & Tobisch, O. T. 2000. Anasagar gneiss: a folded granitoid pluton in the Proterozoic South Delhi Fold Belt, central Rajasthan. Proceedings of the Indian Academy of Sciences (Earth and Planetary Science) 109, 2137.Google Scholar
Naha, K. & Roy, A. B. 1983. The problem of Precambrian basement in Rajasthan, Western India. Precambrian Research 19, 217–23.Google Scholar
Newton, R. C., Charlu, T. V. & Kleppa, O. J. 1980. Thermochemistry of the high structural state plagioclases. Geochemica Cosmochimica Acta 44, 933–41.Google Scholar
Ozha, M. K., Mishra, B., Hazarika, P., Jeyagopal, A. V. & Yadav, G. S. 2016. EPMA monazite geochronology of the basement and supracrustal rocks within the Pur-Banera basin, Rajasthan: evidence of Columbia breakup in northwestern India. Journal of Asian Earth Sciences 117, 284303.Google Scholar
Petrík, I. & Koneč ný, P. 2009. Metasomatic replacement of inherited metamorphic monazite in a biotite-garnet granite from the Nízke Tatry Mountains, Western Carpathians, Slovakia: chemical dating and evidence for disequilibrium melting. American Mineralogist 94, 957–74.CrossRefGoogle Scholar
Roy, A. B. 1988. Introduction. In Precambrian of the Aravalli Mountain, Rajasthan, India (ed. A. B. Roy), i–viii. Memoir of the Geological Society of India 7.Google Scholar
Roy, A. B. 1990. Evolution of the Precambrian crust of the Aravalli Mountain range. In Precambrian Continental Crust and its Economic Resources (ed. Naqvi, S. M.), pp. 327–48. Development in Precambrian Geology 8.Google Scholar
Roy, A. B. & Jakhar, S. R. 2002. Geology of Rajasthan (Northwest India): Precambrian to Recent. Jodhpur: Scientific Publishers (India). 421 pp.Google Scholar
Roy, A. B. & Kröner, A. 1996. Single zircon evaporation ages constraining the growth of the Archaean Aravalli craton, northwestern Indian Shield. Geological Magazine 133, 333–42.Google Scholar
Roy, A. B., Kröner, A., Bhattacharya, P. K. & Rathore, S. 2005. Metamorphic evolution and zircon geochronology of early Proterozoic granulites in the Aravalli Mountains of northwestern India. Geological Magazine 142, 287302.Google Scholar
Roy, A. B., Kröner, A., Rathore, S., Laul, V. & Purohit, R. 2012. Tectono-metamorphic and geochronologic studies from Sandmata Complex, Northwest Indian Shield: implications on exhumation of Late-Palaeoproterozoic Granulites in an Archaean–early Palaeoproterozoic Granite–Gneiss Terrane. Journal of the Geological Society of India 79, 323–34.Google Scholar
Roy, A. B., Somani, M. K. & Sharma, N. K. 1981. Aravalli-Pre-Aravalli relationship – a study from Bhindar, south-central Rajasthan. Indian Journal of Earth Science 8, 119–30.Google Scholar
Saha, L., Bhowmik, S. K., Fukuoka, M. & Dasgupta, S. 2008. Contrasting episodes of regional granulite-facies metamorphism in enclaves and host gneisses from the Aravalli-Delhi Mobile Belt, NW India. Journal of Petrology 49, 107–28.Google Scholar
Sarkar, G., Barman, T. R. & Corfu, F. 1989. Timing of continental arc-type magmatism in northwest India: evidence from U–Pb zircon geochronology. Journal of Geology 97, 607–12.Google Scholar
Sastry, C. A. 1992. Geochronology of the Precambrian rocks from Rajasthan and northeastern Gujarat. Special Publication of the Geological Survey of India 25, 96.Google Scholar
Sawyer, E. W. 2008. Atlas of Migmatites. Ottawa: NRC Research Press.Google Scholar
Sharma, R. S. 1995. An evolutionary model for the Precambrian crust of Rajasthan: some petrological and geochronological considerations. In Continental Crust of Northwestern and Central India (eds Sinha-Roy, S. & Gupta, K. R.), pp. 91116. Memoir of the Geological Society of India 31.Google Scholar
Sinha-Roy, S. 1988. Proterozoic Wilson Cycles in Rajasthan. In Precambrian of Aravalli Mountain, Rajasthan, India. (ed. Roy, A. B.), pp. 95107. Memoir of the Geological Society of India 7.Google Scholar
Sinha-Roy, S. & Malhotra, G. 1989. Structural relations of the cover and its basement: an example from Jahazpur belt, Rajasthan. Journal of the Geological Society of India 34, 233–44.Google Scholar
Sinha-Roy, S., Malhotra, G. & Mohanty, M. 1998. Geology of Rajasthan. Geological Society of India. 278 pp.Google Scholar
Sivaraman, T. V. & Odom, A. L. 1982. Zircon geochronology of Berach granite of Chittaurgarh, Rajasthan. Journal of the Geological Society of India 23, 575–7.Google Scholar
Sugden, T. J., Deb, M. & Windley, B. 1990. Tectonic setting of mineralization in the Proterozoic Aravalli-Delhi orogenic belts, NW India. In Precambrian Continental Crust and its Economic Resources (ed. Naqvi, S. M.), pp. 367–96. Development in Precambrian Geology 8.Google Scholar
Tiwari, H. C., Divakar rao, V., Narayana, B. L., Dixit, M. M., Madhavrao, N., Murthy, A. N. S., Rajendra prasad, B., Reddy, P. R., Venkateswarlu, N., Rao, V. V., Mishra, D. C. & Gupta, S. B. 1998. Nagaur–Jhalawar Geotransect across the Delhi/Aravalli Fold Belt in Northwest India. Journal of the Geological Society of India 52, 153–62.Google Scholar
Tobisch, O. T., Collerson, K. D., Bhattachrya, T. & Mukhopadhyay, D. 1994.Structural relationship and Sr-Nd isotope systematics of polymetamorphic granite gneisses and granitic rocks from central Rajasthan, India – implications for the evolution of Aravalli craton. Precambrian Research 65, 319–39.Google Scholar
Verma, P. K. 1999. Deep continental structures and processes in the Aravalli Mountain range, NW India: focus on evolution and inversion of regional faults. Newsletters, D. S. T., Government of India 9, 21–4.Google Scholar
Verma, P. K. & Greiling, R. O. 1995. Tectonic evolution of the Aravalli orogen (NW India): an inverted Proterozoic rift basin? Geologische Rundschau 84, 683–96.CrossRefGoogle Scholar
Vigneresse, J. L., Barbey, P. & Cuney, M. 1996. Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer. Journal of Petrology 37, 1579–600.Google Scholar
Vijaya Rao, V., Rajendra Prasad, B., Reddy, P. R. & Tewari, H. C. 2000. Evolution of Proterozoic Aravalli Delhi Fold Belt in the northwestern Indian Shield from seismic studies. Tectonophysics 327, 109–30.CrossRefGoogle Scholar
Volpe, A. M. & Macdougall, J. D. 1990. Geochemistry and isotopic characteristics of mafic (Phulad Ophiolite) and related rocks in the Delhi Supergroup, Rajasthan, India: implications for rifting in the Proterozoic. Precambrian Research 48, 167–91.Google Scholar
Waldbaum, D. R. & Thompson, J. B. 1968. Mixing properties of Sanidine crystalline solutions. 2. Calculations based on volume data. American Mineralogist 53, 2000–15.Google Scholar
White, R. W., Powell, R. & Holland, T. J. B. 2001. Calculation of partial melting equilibria in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). Journal of Metamorphic Geology 19, 139–53.Google Scholar
White, R. W., Powell, R. & Holland, T. J. B. 2007. Progress relating to calculation of partial melting equilibria for metapelites. Journal of Metamorphic Geology 25, 511–27.Google Scholar
Wiedenbeck, M. & Goswami, J. N. 1994. High-precision 207Pb/206Pb zircon geochronology using a small ion microprobe. Geochemica et Cosmochimica Acta 58, 2135–41.Google Scholar
Wiedenbeck, M., Goswami, J. N. & Roy, A. B. 1996 a. Stabilization of the Aravalli craton of northwestern India at 2.5 Ga: an ion microprobe zircon study. Chemical Geology 129, 325–40.Google Scholar
Wiedenbeck, M., Goswami, J. N. & Roy, A. B. 1996 b. An ion microprobe study of single zircons from the Amet granite, Rajasthan. Journal of the Geological Society of India 48, 127–37.Google Scholar