Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-28T13:51:08.452Z Has data issue: false hasContentIssue false

Superfluorescence of Ion Beam Synthesized Dense-Packed Embedded CdSe Nanoclusters

Published online by Cambridge University Press:  26 February 2011

H. Karl
Affiliation:
Institut für Physik, Universität Augsburg, D-86135 Augsburg, Germany
I. Groβhans
Affiliation:
Institut für Physik, Universität Augsburg, D-86135 Augsburg, Germany
P. Huber
Affiliation:
Institut für Physik, Universität Augsburg, D-86135 Augsburg, Germany
B. Stritzker
Affiliation:
Institut für Physik, Universität Augsburg, D-86135 Augsburg, Germany
Get access

Extract

Dense-packed embedded semiconductor quantum dot (QD) layers with a multimodal size distribution are representing new types of QD solids. Their optical and electronic properties are modified due to dipole-dipole interactions and tunneling effects. In this work sequential high dose ion implantation of Cd and Se and subsequent thermal treatment is used to synthesize QD assemblies with the required structural properties in the surface near region of 500 nm thick thermally grown SiO2 on Silicon. We used cw photoluminescence (PL) to study PL-yield as a function of pump laser power at low temperatures for different various stoichiometries and annealing conditions. In these embedded QD assemblies of mixed size distribution we detected a promising non-linear increase of the PL-intensity with laser excitation power. The exponents evaluated are maximal for implanted Cd:Se-dose ratios between 0.8 and 1.0. The power law dependence of the PL-yield on pump laser power will be discussed in context with electronic energy transfer between dense-packed QD's of different size, implanted dose ratios and postimplantation thermal treatment conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kagan, C. R., Murray, C. B., Nirmal, M., Bawendi, M. G., Phys. Rev. Lett. 76, 9 (1996) 1517 Google Scholar
2. Gindele, F., Westphaling, R., Woggon, U., Spanhel, L., Platschek, V., Appl. Phys. Lett. 1997, 71, 2181 Google Scholar
3. Artemyev, M. V., Woggon, U., Jaschinski, H., Gurinovich, L. J., Gaponenko, S. V., J. Phys. Chem. B 2000, 104, 11617 Google Scholar
4. Chan, Y., Caruge, J.-M., Snee, P. T., Bawendi, M. G., Appl. Phys. Lett. 85, 13 (2004) 2460 Google Scholar
5. Malko, A. V., Mikhailovsky, A. A., Petruska, M. A., Hollingsworth, J. A., Htoon, H., Bawendi, M. G., Klimov, V. I., Appl. Phys. Lett. 81, 7 (2002) 1303 Google Scholar
6. Mikhailovsky, A. A., Malko, A. V., Hollingsworth, J. A., Bawendi, M. G., Klimov, V. I., Appl. Phys. Lett. 80, 13 (2003) 2380 Google Scholar
7. Budai, J.D., White, C. W., Withrow, S.P., Zuhr, R.A., Zhu, J.G., Mat. Res. Soc. Symp. Proc. 452 (1997) 89 Google Scholar
8. Meldrum, , White, C.W., Boatner, L.A., Anderson, I.M., Zuhr, R.A., Sonder, E., Budai, J.D., Henderson, D.O., Nucl. Instr. and Meth. B 148 (1999) 957.Google Scholar
9. Groβhans, I., Karl, H. and Stritzker, B., Mat. Res. Soc. Symp. Proc., Vol. 804 (2004)Google Scholar
10. Karl, H., Groβhans, I. and Stritzker, B., Mat. Res. Soc. Symp. Proc. Vol. 794 (2004)Google Scholar
11. Groβhans, I., Karl, H. and Stritzker, B., Mat. Sci. and Eng. B 101 (2003) p. 212215 Google Scholar
Groβhans, I., Karl, H. and Stritzker, B., Nucl. Inst. and Meth. B, 190 (2002) 865868 Google Scholar
12. Shaklee, K. L., Leheny, R. F., Nahory, R. E., Phys. Rev. Lett. 26 (1971) 888 Google Scholar
13. Valenta, J., Pelant, I., Linnros, J., Appl. Phys. Lett. 81, 8 (2003) 1396 Google Scholar