Skip to main content Accessibility help
×
  • Cited by 1
Publisher:
Cambridge University Press
Online publication date:
June 2014
Print publication year:
2014
Online ISBN:
9781107238992

Book description

This book provides a lucid exposition of the connections between non-commutative geometry and the famous Riemann Hypothesis, focusing on the theory of one-dimensional varieties over a finite field. The reader will encounter many important aspects of the theory, such as Bombieri's proof of the Riemann Hypothesis for function fields, along with an explanation of the connections with Nevanlinna theory and non-commutative geometry. The connection with non-commutative geometry is given special attention, with a complete determination of the Weil terms in the explicit formula for the point counting function as a trace of a shift operator on the additive space, and a discussion of how to obtain the explicit formula from the action of the idele class group on the space of adele classes. The exposition is accessible at the graduate level and above, and provides a wealth of motivation for further research in this area.

Reviews

'This charming book is an attempt to understand some modern approaches to the [Riemann Hypothesis] … This intriguing material is recommended, e.g. for an advanced student seminar.'

Source: Nieuw Archief voor Wiskunde

'This lovely book offers an easy-pace account of the Riemann Hypothesis (RH) for function fields.'

Anton Deitmar Source: Mathematical Reviews

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
[Art1] Artin, E., Quadratische Körper im Gebiete der höheren Kongruenzen I, II, Math. Zeitschr. 19 (1924).
[Art2] Artin, E., Algebraic Numbers and Algebraic Functions1, Amer. Math. Soc., Providence, RI, 2000. (Reprinted from the 1967 edition.)
[Bak] Baker, A., A Comprehensive Course in Number Theory, Cambridge University Press, 2012.
[Bom1] Bombieri, E., Counting points on curves over finite fields, Seminaire Bourbaki 430 (1973).
[Bom2] Bombieri, E., Hilbert's 8th problem: an analogue, in: Mathematical Developments Arising from Hilbert Problems, Proc. Symposia in Pure Mathematics XXVIII, Amer. Math. Soc., Providence, RI, 1976, 269–274.
[Bor] Borger, J., A-Rings and the field with one element, arxiv.org, 0906.3146.pdf.
[BC] Bost, J.-B., Connes, A., Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory, Sel. Math., New Ser. 1(1995), 411–457.
[Conn1] Connes, A., Trace formula in noncommutative geometry and the zeros of the Riemann zeta function, Sel. Math., New Ser. 5 (1999), 29–106.
[Conn2] Connes, A., Noncommutative geometry and the Riemann zeta function, preprint, 2000.
[CoCo1] Connes, A., Consani, K., Schemes over F1 and zeta functions, Compositio Mathematica 146 (6) (2010), 1383–1415.
[CoCo2] Connes, A., Consani, K., The hyperring of adele classes, J. Number Theory 131 (2011), 159–194.
[CoCo3] Connes, A., Consani, K., On the arithmetic of the BC-system, arXiv:1103.4672 [math.QA], 2011.
[CoCo4] Connes, A., Consani, K., The universal thickening of the field of real numbers, preprint, 2012, www.alainconnes.org/docs/witt_infty.pdf.
[CCM] Connes, A., Consani, K., Marcolli, M., The Weil proof and the geometry of the adeles class space, arXiv:math/0703392v1, 2007.
[CMR] Connes, A., Marcolli, M., Ramachandran, N., KMS states and complex multiplication, www.alainconnes.org/docs/cmr0.pdf and CMR1.pdf, 2004.
[Conr] Conrey, J. B., The Riemann hypothesis, Notices Amer. Math. Soc., March 2003, 341–353.
[dV1] de la Valleé-Poussin, C.-J., Recherches analytiques sur la théorie des nombres; Première partie: La fonction ς(s) de Riemann et les nombres premiers en général, Ann. Soc. Sci. Bruxelles Sér. I 20 (1896), 183–256.
[dV2] de la Valleé-Poussin, C.-J., Sur la fonction ς(s) de Riemann et le nombre des nombres premiers inférieurs à une limite donnée, Mém. Couronnés et Autres Mém. Publ. Acad. Roy. Sci., des Lettres, Beaux-Arts Belg. 59 (18991900).
[De1] Deligne, P., La conjecture de Weil I, Publ. Math. Inst. Hautes Etudes Sci. 48 (1974), 273–308.
[Den1] Deninger, C., Lefschetz trace formulas and explicit formulas in analytic number theory, J. reine angew. Math. 441 (1993), 1–15.
[Den2] Deninger, C., Evidence for a cohomological approach to analytic number theory, in: Proc. First European Congress of Mathematics (A., Josephet al., eds.) I, Paris, July 1992, Birkhäuser-Verlag, Basel, 1994, 491–510.
[Ed] Edwards, H. M., Riemann's Zeta Function, Dover Books, New York, 2001.
[Ei] Eichler, M., Introduction to the Theory of Algebraic Numbers and Functions, Pure and Applied Mathematics 23, Academic Press, New York, 1966.
[FreiK] Freitag, E., Kiehl, R., Etale Cohomology and the Weil Conjecture, Springer-Verlag, Berlin, Heidelberg, New York, 1988.
[GVF] Gracia-Bondia, J. M., Varilly, J. C., Figueroa, H., Elements of Noncommutative Geometry, Birkhäuser Advanced Texts, Boston, MA, 2001.
[Had] Hadamard, J., Sur la distribution des zéros de la fonction ς(s) et ses conséquences arithmétiques, Bull. Soc. Math. France 24 (1896), 199–220.
[Har1] Haran, S., Index theory, potential theory, and the Riemann hypothesis, in: L-Functions and Arithmetic (J., Coates, M. J., Taylor, eds.), London Mathematical Society Lecture Notes Series 153, 1989, 257–270.
[Har2] Haran, S., On Riemann's zeta function, in: Dynamical, Spectral, and Arithmetic Zeta Functions (M. L., Lapidus, M. van, Frankenhuijsen, eds.), Contemporary Mathematics 290, Amer. Math. Soc., Providence, RI, 2001, 93–112.
[Har3] Haran, S., The Mysteries of the Real Prime, London Mathematical Society monographs, New Series 25, Clarendon Press, Oxford, 2001.
[Har4] Haran, S., Non-additive geometry, Compositio Mathematica 143(2007), 618–688.
[Hart] Hartshorne, R., Algebraic Geometry, Graduate Texts in Mathematics, Springer-Verlag, 1977.
[Has1] Hasse, H., Ueber Kongruenzzetafunktionen, S. Ber. Preuß. Ak. Wiss. 1934, p. 250.
[Has2] Hasse, H., Zahlentheorie, Berlin, 1949.
[Hay] Hayman, W. K., Meromorphic Functions, Oxford University Press, London, 1975.
[HiRoe] Higson, N., Roe, J., Surveys in Noncommutative Geometry, Clay Mathematics Proceedings 6, Amer. Math. Soc., Providence, RI, 2006.
[In] Ingham, A. E., The Distribution of Prime Numbers, Cambridge University Press, 1932.
[Iw] Iwasawa, K., On the rings of valuation vectors, Annals of Math., 2nd Ser. 57 (1953), 331–356.
[K1] Katz, N. M., An overview of Deligne's proof of the Riemann hypothesis for varieties over finite fields (Hilbert's problem 8), in: Mathematical Developments Arising from Hilbert Problems, Proc. Symposia in Pure Mathematics XXVIII, Amer. Math. Soc., Providence, RI, 1976, 275–305.
[K2] Katz, N. M., Review of [FreiK], Bull. (N. S.) Amer. Math. Soc. 22 (1) (1990).
[K3] Katz, N. M., L-Functions and Monodromy: Four Lectures on Weil II, Adv. Math. 160 (2001), 81–132.
[Lac-vF1] Laca, M., van Frankenhuijsen, M., Phase transitions on Hecke C*-algebras and class-field theory over Q, J. reine angew. Math. 595 (2006), 25–53.
[Lac-vF2] Laca, M., van Frankenhuijsen, M., Phase transitions with spontaneous symmetry breaking on Hecke C*-algebras from number fields, in: Noncommutative Geometry and Number Theory: Where Arithmetic Meets Geometry and Physics (K., Consani and M., Marcolli, eds.), Aspects of Mathematics E 37, Vieweg, 2006.
[Lag] Lagarias, J. C., The Riemann Hypothesis: Arithmetic and Geometry, in [HiRoe, pp. 127–141].
[LagR] Lagarias, J. C., Rains, E., On a two-variable zeta function for number fields (Sur une fonction zêta à deux variables pour les corps de nombres), Ann. Inst. Fourier 53 (1) (2003), 1–68.
[LanCh] Lang, S., Cherry, W., Topics in Nevanlinna Theory, Lecture Notes in Mathematics 1433, Springer-Verlag, 1990.
[Lap-vF1] Lapidus, M. L., van Frankenhuijsen, M., Fractal Geometry and Number Theory: Complex Dimensions of Fractal Strings and Zeros of Zeta Functions), Birkhäuser, Boston, MA, 2000.
[Lap-vF2] Lapidus, M. L., van Frankenhuijsen, M., Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings (second edition), Springer Monographs in Mathematics, 2013.
[Li] Li, X.-J., A transformation of Hankel type on the field of p-adic numbers, J. Algebra, Numb. Th. and Appl. 12 (2009), 205–229.
[Lo] Lorenzini, D., An Invitation to Arithmetic Geometry, Graduate Studies in Mathematics 9, Amer. Math. Soc., Providence, RI, 1996.
[Nau] Naumann, N., On the irreducibility of the two variable zeta-function for curves over finite fields, C. R. Acad. Sci. Paris Sér. I Math. 336 (2003), 289–292, and arXiv:math.AG/0209092, 2002.
[Ost] Ostrowski, A., Über einige Lösungen der Funktionalgleichung φ(x) φ(y) = φ(xy), Acta Mathematica 41 (1) (1918), 271–284.
[Pel] Pellikaan, R., On special divisors and the two variable zeta function of algebraic curves over finite fields, in: Arithmetic, Geometry and Coding Theory, Proceedings of the International Conference held at CIRM, Luminy, France, 1993, 175–184.
[Ray] Raynaud, M., André Weil and the foundations of algebraic geometry, Notices Amer. Math. Soc., September 1999, 864–867.
[Ri1] Riemann, B., Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse, in [Ri2, p. 145] and translated in [Ed, p. 299].
[Ri2] Riemann, B., Gesammelte Werke, Teubner, Leipzig, 1892 (reprinted by Dover Books, New York, 1953).
[Roq] Roquette, P., Arithmetischer Beweis der Riemannschen Vermutung in Kongruenzfunktionenkörpern beliebigen Geschlechts, J. reine angew. Math. 191 (1953), 199–252.
[Ros] Rosen, M., Number Theory in Function Fields, Graduate Texts in Mathematics 210, Springer-Verlag, 2002.
[Sa] Saxe, K., Beginning Functional Analysis, Undergraduate Texts in Mathematics, Springer-Verlag, 2002.
[fSch] Schmidt, F. K., Analytische Zahlentheorie in Körpern der Characteristik p, Math. Zeitschr. 33 (1931).
[wSch] Schmidt, W. M., Equations over Finite Fields: An Elementary Approach, Lecture Notes in Mathematics 536, Springer-Verlag, 1976.
[Se] Serre, J.-P., Local Fields, Graduate Texts in Mathematics 67, Springer-Verlag, Berlin, 1979.
[Sm] Smirnov, A. L., Hurwitz inequalities for number fields, Algebra i Analiz 4(2) (1992), 186–209.
[So] Soulé, C., Les variétés sur le corps à un element, arXiv:math/0304444 [math.AG], 2003.
[Ste] Stepanov, S. A., On the number of points of a hyperelliptic curve over a finite prime field, Izv. Akad. Nauk SSSR, Ser. Math. 33 (1969), 1103–1114.
[Sti] Stichtenoth, H., Algebraic Function Fields and Codes, Springer-Verlag, Berlin, 1993.
[Ta] Tate, J., Fourier analysis in number fields and Hecke's zeta-functions, in: Algebraic Number Theory (J.W.S., Cassels, A., Frohlich, eds.), Academic Press, New York, 1967, 305–347.
[Tr] Tretkoff, P., Noncommutative Geometry and Number Theory, in [HiRoe, pp. 143–189].
[vF1] van Frankenhuijsen, M., Arithmetic Progressions of Zeros of the Riemann Zeta Function, J. Number Theory 115 (2005), 360–370.
[vF2] van Frankenhuijsen, M., The zeta function of a function field, preprint, 2007.
[V] Villa Salvador, G. D., Topics in the Theory of Algebraic Function Fields, Birkhäuser, Boston, 2006.
[W1] Weil, A., Sur les fonctions algébriques à corps de constantes fini, C. R. Acad. Sci. Paris 210 (1940), 592–594; reprinted in [W9, I pp. 257–259].
[W2] Weil, A., On the Riemann hypothesis in function-fields, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 345–347; reprinted in [W9, I pp. 277–279].
[W3] Weil, A., Letter to Artin, July 10, 1942; reprinted in [W9, I pp. 280–298].
[W4] Weil, A., Foundations of Algebraic Geometry, Colloquium Publications 29, Amer. Math. Soc., New York 1946; second edition Providence, RI, 1962.
[W5] Weil, A., Number of solutions of equations in finite fields, Bull. Amer. Math. Soc. 55 (1949), 497–508; reprinted in [W9, I pp. 399–410].
[W6] Weil, A., Sur les “formules explicites” de la théorie des nombres premiers, Comm. Sém. Math. Lund, Université de Lund, Tome supplémentaire (dédié à Marcel Riesz), (1952), 252–265; reprinted in [W9, II pp. 48–61].
[W7] Weil, A., Courbes Algébriques et Variétés Abéliennes, Hermann, Paris, 1971. (Combined in one volume Sur les courbes algébriques et les variétés qui s'en déduisent, Pub. Inst. Math. Strasbourg VII (1945), 1–85, and Variétés Abéliennes et courbes algébriques, Actualités scientifiques et industrielles 1041, Hermann, Paris, 1948.)
[W8] Weil, A., Basic Number Theory, Springer Classics in Mathematics, 1995.
[W9] Weil, A., André Weil: Oeuvres Scientifiques (Collected Papers) I, II, and III, 2nd edition with corrected printing, Springer-Verlag, Berlin and New York, 1980.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.