Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-17T07:36:08.203Z Has data issue: false hasContentIssue false

6 - Impacts of Climate Change on Allergen Seasonality

Published online by Cambridge University Press:  05 August 2016

Paul J. Beggs
Affiliation:
Macquarie University, Sydney
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, L. V., Allen, S. K., Bindoff, N. L., et al. (2013). Summary for policymakers. In: Stocker, T. F., Qin, D., Plattner, G.-K., et al., eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press, pp. 329.Google Scholar
American Academy of Allergy, Asthma, and Immunology (AAAAI) (2015). Allergy Statistics. Available at: www.aaaai.org/about-the-aaaai/newsroom/allergy-statistics.aspx. Accessed 19 June 2015.Google Scholar
Arbes Jr, S. J., Gergen, P. J., Elliott, L., Zeldin, D. C. (2005). Prevalences of positive skin test responses to 10 common allergens in the US population: results from the Third National Health and Nutrition Examination Survey. The Journal of Allergy and Clinical Immunology, 116(2), 377383.CrossRefGoogle ScholarPubMed
Arbor Day Foundation (2006). 2006 Hardiness Zone Map. Available at: www.arborday.org/media/zones.cfm. Accessed 19 June 2015.Google Scholar
Ariano, R., Canonica, G. W., Passalacqua, G. (2010). Possible role of climate changes in variations in pollen seasons and allergic sensitizations during 27 years. Annals of Allergy, Asthma & Immunology, 104(3), 215222.CrossRefGoogle Scholar
Bassett, I. J., Crompton, C. W. (1975). The biology of Canadian weeds. 11. Ambrosia artemisiifolia L. and A. psilostachya DC. Canadian Journal of Plant Science, 55(2), 463476.CrossRefGoogle Scholar
Bazzaz, F. A. (1970). Secondary dormancy in the seeds of the common ragweed Ambrosia artemisiifolia. Bulletin of the Torrey Botanical Club, 97(5), 302305.CrossRefGoogle Scholar
Beggs, P. J. (2004). Impacts of climate change on aeroallergens: past and future. Clinical and Experimental Allergy, 34(10), 15071513.CrossRefGoogle ScholarPubMed
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., Courchamp, F. (2012). Impacts of climate change on the future of biodiversity. Ecology Letters, 15(4), 365377.CrossRefGoogle ScholarPubMed
Bergot, M., Cloppet, E., Pérarnaud, V., et al. (2004). Simulation of potential range expansion of oak disease caused by Phytophthora cinnamomi under climate change. Global Change Biology, 10(9), 15391552.CrossRefGoogle Scholar
Bielory, L., Lyons, K., Goldberg, R. (2012). Climate change and allergenic disease. Current Allergy and Asthma Reports, 12(6), 485494.CrossRefGoogle ScholarPubMed
Blando, J., Bielory, L., Nguyen, V., Diaz, R., Jeng, H. A. (2012). Anthropogenic climate change and allergic diseases. Atmosphere, 3(1), 200212.CrossRefGoogle Scholar
Bryce, M., Drews, O., Schenk, M. F., et al. (2010). Impact of urbanization on the proteome of birch pollen and its chemotactic activity on human granulocytes. International Archives of Allergy and Immunology, 151(1), 4655.CrossRefGoogle ScholarPubMed
Burge, H. A. (1985). Fungus allergens. Clinical Reviews in Allergy, 3(3), 319329.CrossRefGoogle ScholarPubMed
Cecchi, L., D’Amato, G., Ayres, J. G., et al. (2010). Projections of the effects of climate change on allergic asthma: the contribution of aerobiology. Allergy, 65(9), 10731081.CrossRefGoogle ScholarPubMed
Celenza, A., Fothergill, J., Kupek, E., Shaw, R. J. (1996). Thunderstorm associated asthma: a detailed analysis of environmental factors. British Medical Journal, 312(7031), 604607.CrossRefGoogle ScholarPubMed
Centers for Disease Control and Prevention (2014). Allergies and Hay Fever. Available at: www.cdc.gov/nchs/fastats/allergies.htm. Accessed 22 June 2015.Google Scholar
Cheaib, A., Badeau, V., Boe, J., et al. (2012). Climate change impacts on tree ranges: model intercomparison facilitates understanding and quantification of uncertainty. Ecology Letters, 15(6), 533544.CrossRefGoogle ScholarPubMed
Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A., Schwartz, M. D. (2007). Shifting plant phenology in response to global change. Trends in Ecology and Evolution, 22(7), 357365.CrossRefGoogle ScholarPubMed
Clot, B. (2003). Trends in airborne pollen: an overview of 21 years of data in Neuchâtel (Switzerland). Aerobiologia, 19(3–4), 227234.CrossRefGoogle Scholar
Cook, B. I., Wolkovich, E. M., Parmesan, C. (2012). Divergent responses to spring and winter warming drive community level flowering trends. Proceedings of the National Academy of Sciences of the United States of America, 109(23), 90009005.CrossRefGoogle Scholar
Corden, J. M., Millington, W. M. (2001). The long-term trends and seasonal variation of the aeroallergen Alternaria in Derby, UK. Aerobiologia, 17(2), 127136.CrossRefGoogle Scholar
Corden, J. M., Millington, W. M., Mullins, J. (2003). Long-term trends and regional variation in the aeroallergen Alternaria in Cardiff and Derby UK – are differences in climate and cereal production having an effect? Aerobiologia, 19(3–4), 191199.CrossRefGoogle Scholar
Csontos, P., Vitalos, M., Barina, Z., Kiss, L. (2010). Early distribution and spread of Ambrosia artemisiifolia in Central and Eastern Europe. Botanica Helvetica, 120(1), 7578.CrossRefGoogle Scholar
Dahl, Å., Strandhede, S.-O., Wihl, J.-Å. (1999). Ragweed – an allergy risk in Sweden? Aerobiologia, 15(4), 293297.CrossRefGoogle Scholar
Dales, R. E., Cakmak, S., Judek, S., et al. (2003). The role of fungal spores in thunderstorm asthma. Chest, 123(3), 745750.CrossRefGoogle ScholarPubMed
Dales, R. E., Cakmak, S., Judek, S., et al. (2004). Influence of outdoor aeroallergens on hospitalization for asthma in Canada. The Journal of Allergy and Clinical Immunology, 113(2), 303306.CrossRefGoogle ScholarPubMed
D’Amato, G., Cecchi, L. (2008). Effects of climate change on environmental factors in respiratory allergic diseases. Clinical and Experimental Allergy, 38(8), 12641274.CrossRefGoogle ScholarPubMed
D’Amato, G., Liccardi, G., Frenguelli, G. (2007). Thunderstorm-asthma and pollen allergy. Allergy, 62(1), 1116.CrossRefGoogle ScholarPubMed
Dapul-Hidalgo, G., Bielory, L. (2012). Climate change and allergic diseases. Annals of Allergy, Asthma & Immunology, 109(3), 166172.CrossRefGoogle ScholarPubMed
Eckl-Dorna, J., Klein, B., Reichenauer, T. G., Niederberger, V., Valenta, R. (2010). Exposure of rye (Secale cereale) cultivars to elevated ozone levels increases the allergen content in pollen. The Journal of Allergy and Clinical Immunology, 126(6), 13151317.CrossRefGoogle ScholarPubMed
Emberlin, J. (1994). The effects of patterns in climate and pollen abundance on allergy. Allergy, 49(s18), 1520.CrossRefGoogle ScholarPubMed
Emberlin, J., Detandt, M., Gehrig, R., et al. (2002). Responses in the start of Betula (birch) pollen seasons to recent changes in spring temperatures across Europe. International Journal of Biometeorology, 46(4), 159170. See also erratum (2003). 47(2), 113–115.Google ScholarPubMed
Fitter, A. H., Fitter, R. S. R. (2002). Rapid changes in flowering time in British plants. Science, 296(5573), 16891691.CrossRefGoogle ScholarPubMed
Frenz, D. A. (1999). Comparing pollen and spore counts collected with the Rotorod Sampler and Burkard spore trap. Annals of Allergy, Asthma & Immunology, 83(5), 341349.CrossRefGoogle ScholarPubMed
Galán, C., García-Mozo, H., Vázquez, L., et al. (2005). Heat requirement for the onset of the Olea europaea L. pollen season in several sites in Andalusia and the effect of the expected future climate change. International Journal of Biometeorology, 49(3), 184188.CrossRefGoogle ScholarPubMed
Garbutt, K., Williams, W. E., Bazzaz, F. A. (1990). Analysis of the differential response of five annuals to elevated CO2 during growth. Ecology, 71(3), 11851194.CrossRefGoogle Scholar
García-Mozo, H., Galán, C., Jato, V., et al. (2006). Quercus pollen season dynamics in the Iberian Peninsula: response to meteorological parameters and possible consequences of climate change. Annals of Agriculture and Environmental Medicine, 13(2), 209224.Google ScholarPubMed
George, K., Ziska, L. H., Bunce, J. A., Quebedeaux, B. (2007). Elevated atmospheric CO2 concentration and temperature across an urban-rural transect. Atmospheric Environment, 41(35), 76547665.CrossRefGoogle Scholar
Hansen, J., Sato, M., Ruedy, R., et al. (2006). Global temperature change. Proceedings of the National Academy of Sciences of the United States of America, 103(39), 1428814293.CrossRefGoogle ScholarPubMed
Hatfield, J. L., Boote, K. J., Kimball, B. A., et al. (2011). Climate impacts on agriculture: implications for crop production. Agronomy Journal, 103(2), 351370.CrossRefGoogle Scholar
He, J.-S., Bazzaz, F. A. (2003). Density-dependent responses of reproductive allocation to elevated atmospheric CO2 in Phytolacca americana. New Phytologist, 157(2), 229239.CrossRefGoogle ScholarPubMed
Institute of Medicine (US) (2004). Committee on Damp Indoor Spaces and Health. Damp Indoor Spaces and Health. Washington, DC: The National Academies Press.Google Scholar
IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T. F., Qin, D., Plattner, G.-K., et al., eds.]. Cambridge, UK and New York, NY: Cambridge University Press.Google Scholar
IPCC (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C. B., Barros, V. R., Dokken, D. J., et al., eds.]. Cambridge, UK and New York, NY: Cambridge University Press.Google Scholar
Iverson, L. R., Prasad, A. M. (1998). Predicting abundance of 80 tree species following climate change in the eastern United States. Ecological Monographs, 68(4), 465485.CrossRefGoogle Scholar
Jablonski, L. M., Wang, X., Curtis, P. S. (2002). Plant reproduction under elevated CO2 conditions: a meta-analysis of reports on 79 crop and wild species. New Phytologist, 156(1), 926.CrossRefGoogle Scholar
Johnston, A., Reekie, E. (2008). Regardless of whether rising atmospheric carbon dioxide levels increase air temperature, flowering phenology will be affected. International Journal of Plant Sciences, 169(9), 12101218.CrossRefGoogle Scholar
Kanter, U., Heller, W., Durner, J., et al. (2013). Molecular and immunological characterization of ragweed (Ambrosia artemisiifolia L.) pollen after exposure of the plants to elevated ozone over a whole growing season. PLoS One, 8(4), e61518.CrossRefGoogle Scholar
Kelly, J. J., Bansal, A., Winkelman, J., et al. (2010). Alteration of microbial communities colonizing leaf litter in a temperate woodland stream by growth of trees under conditions of elevated atmospheric CO2. Applied and Environmental Microbiology, 76(15), 49504959.CrossRefGoogle Scholar
Klironomos, J. N., Rillig, M. C., Allen, M. F., et al. (1997). Increased levels of airborne fungal spores in response to Populus tremuloides grown under elevated atmospheric CO2. Canadian Journal of Botany, 75(10), 16701673.CrossRefGoogle Scholar
Knowlton, K., Rotkin-Ellman, M., Solomon, G. (2007). Sneezing and Wheezing: How Global Warming Could Increase Ragweed Allergies, Air Pollution, and Asthma. New York: Natural Resources Defense Council. Available at: www.nrdc.org/globalwarming/sneezing/sneezing.pdf. Accessed 23 June 2015.Google Scholar
LaDeau, S. L., Clark, J. S. (2001). Rising CO2 levels and the fecundity of forest trees. Science, 292(5514), 9598.CrossRefGoogle ScholarPubMed
Leishman, M. R., Sanbrooke, K. J., Woodfin, R. M. (1999). The effects of elevated CO2 and light environment on growth and reproductive performance of four annual species. New Phytologist, 144(3), 455462.CrossRefGoogle ScholarPubMed
McDonald, A., Riha, S., DiTommaso, A., DeGaetano, A. (2009). Climate change and the geography of weed damage: analysis of U.S. maize systems suggests the potential for significant range transformations. Agriculture, Ecosystems & Environment, 130(3–4), 131140.CrossRefGoogle Scholar
Meinshausen, M., Smith, S. J., Calvin, K., et al. (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109(1–2), 213241.CrossRefGoogle Scholar
Miller-Rushing, A. J., Primack, R. B. (2008). Effects of winter temperatures on two birch (Betula) species. Tree Physiology, 28(4), 659664.CrossRefGoogle ScholarPubMed
Motta, A. C., Marliere, M., Peltre, G., Sterenberg, P. A., Lacroix, G. (2006). Traffic-related air pollutants induce the release of allergen-containing cytoplasmic granules from grass pollen. International Archives of Allergy and Immunology, 139(4), 294298.CrossRefGoogle ScholarPubMed
Neil, K., Wu, J. (2006). Effects of urbanization on plant flowering phenology: a review. Urban Ecosystems, 9(3), 243257.CrossRefGoogle Scholar
Oswalt, M. L., Marshall Jr, G. D. (2008). Ragweed as an example of worldwide allergen expansion. Allergy, Asthma, and Clinical Immunology, 4(3), 130135.CrossRefGoogle ScholarPubMed
Peden, D., Reed, C. E. (2010). Environmental and occupational allergies. The Journal of Allergy and Clinical Immunology, 125(2), S150S160.CrossRefGoogle ScholarPubMed
Pielke Sr, R. A., Marland, G., Betts, R. A., et al. (2002). The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 360(1797), 17051719.CrossRefGoogle Scholar
Piovesan, G., Adams, J. M. (2001). Masting behaviour in beech: linking reproduction and climatic variation. Canadian Journal of Botany, 79(9), 10391047.CrossRefGoogle Scholar
Portnoy, J. M., Barnes, C. S., Kennedy, K. (2008). Importance of mold allergy in asthma. Current Allergy and Asthma Reports, 8(1), 7178.CrossRefGoogle ScholarPubMed
Ratard, R., Brown, C. M., Ferdinands, J., et al. (2006). Health concerns associated with mold in water-damaged homes after Hurricanes Katrina and Rita – New Orleans Area, Louisiana, October 2005. Morbidity and Mortality Weekly Report, 55(2), 4144.Google Scholar
Reid, C. E., Gamble, J. L. (2009). Aeroallergens, allergic disease, and climate change: impacts and adaptation. EcoHealth, 6(3), 458470.CrossRefGoogle ScholarPubMed
Rodríguez-Rajo, F. J., Fdez-Sevilla, D., Stach, A., Jato, V. (2010). Assessment between pollen seasons in areas with different urbanization level related to local vegetation sources and differences in allergen exposure. Aerobiologia, 26(1), 114.CrossRefGoogle Scholar
Roetzer, T., Wittenzeller, M., Haeckel, H., Nekovar, J. (2000). Phenology in central Europe – differences and trends of spring phenophases in urban and rural areas. International Journal of Biometeorology, 44(2), 6066.CrossRefGoogle ScholarPubMed
Rogers, C. A., Wayne, P. M., Macklin, E. A., et al. (2006). Interaction of the onset of spring and elevated atmospheric CO2 on ragweed (Ambrosia artemisiifolia L.) pollen production. Environmental Health Perspectives, 114(6), 865869.CrossRefGoogle ScholarPubMed
Salo, P. M., Arbes Jr, S. J., Sever, M., et al. (2006). Exposure to Alternaria alternata in US homes is associated with asthma symptoms. The Journal of Allergy and Clinical Immunology, 118(4), 892898.CrossRefGoogle ScholarPubMed
Shea, K. M., Truckner, R. T., Weber, R. W., Peden, D. B. (2008). Climate change and allergic disease. The Journal of Allergy and Clinical Immunology, 122(3), 443453.CrossRefGoogle ScholarPubMed
Solomon, G. M., Hjelmroos-Koski, M., Rotkin-Ellman, M., Hammond, S. K. (2006). Airborne mold and endotoxin concentrations in New Orleans, Louisiana, after flooding, October through November 2005. Environmental Health Perspectives, 114(9), 13811386.CrossRefGoogle ScholarPubMed
Sork, V. L., Bramble, J., Sexton, O. (1993). Ecology of mast-fruiting in three species of North American deciduous oaks. Ecology, 74(2), 528541.CrossRefGoogle Scholar
Sparks, T. H., Jeffree, E. P., Jeffree, C. E. (2000). An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. International Journal of Biometeorology, 44(2), 8287.CrossRefGoogle ScholarPubMed
Spieksma, F. Th. M., Corden, J. M., Detandt, M., et al. (2003). Quantitative trends in annual totals of five common airborne pollen types (Betula, Quercus, Poaceae, Urtica, and Artemisia), at five pollen-monitoring stations in western Europe. Aerobiologia, 19(3–4), 171184.CrossRefGoogle Scholar
Springer, C. J., Orozco, R. A., Kelly, J. K., Ward, J. K. (2008). Elevated CO2 influences the expression of floral-initiation genes in Arabidopsis thaliana. New Phytologist, 178(1), 6367.CrossRefGoogle ScholarPubMed
Springer, C. J., Ward, J. K. (2007). Flowering time and elevated atmospheric CO2. New Phytologist, 176(2), 243255.CrossRefGoogle ScholarPubMed
Stach, A., García-Mozo, H., Prieto-Baena, J. C., et al. (2007). Prevalence of Artemisia species pollinosis in western Poland: impact of climate change on aerobiological trends, 1995–2004. Journal of Investigational Allergology and Clinical Immunology, 17(1), 3947.Google ScholarPubMed
Stocker, T. F., Qin, D., Plattner, G.-K., et al. (2013). Technical summary. In: Stocker, T. F., Qin, D., Plattner, G.-K., et al., eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press, pp. 33115.Google Scholar
Suárez-Cervera, M., Castells, T., Vega-Maray, A., et al. (2008). Effects of air pollution on Cup a 3 allergen in Cupressus arizonica pollen grains. Annals of Allergy, Asthma & Immunology, 101(1), 5766.CrossRefGoogle ScholarPubMed
Unger, J. (1999). Comparisons of urban and rural bioclimatological conditions in the case of a Central-European city. International Journal of Biometeorology, 43(3), 139144.CrossRefGoogle Scholar
van Vliet, A. J. H., Overeem, A., De Groot, R. S., Jacobs, A. F. G., Spieksma, F. T. M. (2002). The influence of temperature and climate change on the timing of pollen release in the Netherlands. International Journal of Climatology, 22(14), 17571767.CrossRefGoogle Scholar
Wan, S., Hui, D., Wallace, L., Luo, Y. (2005). Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Global Biogeochemical Cycles, 19(2), GB2014.CrossRefGoogle Scholar
Wan, S., Yuan, T., Bowdish, S., et al. (2002). Response of an allergenic species, Ambrosia psilostachya (Asteraceae), to experimental warming and clipping: implications for public health. American Journal of Botany, 89(11), 18431846.CrossRefGoogle ScholarPubMed
Wang, X. (2005). Reproduction and progeny of Silene latifolia (Caryophyllaceae) as affected by atmospheric CO2 concentration. American Journal of Botany, 92(5), 826832.CrossRefGoogle ScholarPubMed
Ward, J. K., Strain, B. R. (1999). Elevated CO2 studies: past, present and future. Tree Physiology, 19(4–5), 211220.CrossRefGoogle ScholarPubMed
Wolf, J., O’Neill, N. R., Rogers, C. A., Muilenberg, M. L., Ziska, L. H. (2010). Elevated atmospheric carbon dioxide concentrations amplify Alternaria alternata sporulation and total antigen production. Environmental Health Perspectives, 118(9), 12231228.CrossRefGoogle ScholarPubMed
Yli-Panula, E., Fekedulegn, D. B., Green, B. J., Ranta, H. (2009). Analysis of airborne Betula pollen in Finland; a 31-year perspective. International Journal of Environmental Research and Public Health, 6(6), 17061723.CrossRefGoogle ScholarPubMed
Zhu, W., Tian, H., Xu, X., et al. (2012). Extension of the growing season due to delayed autumn over mid and high latitudes in North America during 1982–2006. Global Ecology and Biogeography, 21(2), 260271.CrossRefGoogle Scholar
Ziska, L. H. (2002). Sensitivity of ragweed (Ambrosia artemisiifolia) growth to urban ozone concentrations. Functional Plant Biology, 29(11), 13651369.CrossRefGoogle ScholarPubMed
Ziska, L. H., Bunce, J. A., Goins, E. W. (2004). Characterization of an urban-rural CO2/temperature gradient and associated changes in initial plant productivity during secondary succession. Oecologia, 139(3), 454458.CrossRefGoogle ScholarPubMed
Ziska, L. H., Caulfield, F. A. (2000). Rising CO2 and pollen production of common ragweed (Ambrosia artemisiifolia), a known allergy-inducing species: implications for public health. Australian Journal of Plant Physiology, 27(10), 893898.Google Scholar
Ziska, L. H., Epstein, P. R., Schlesinger, W. H. (2009). Rising CO2, climate change, and public health: exploring the links to plant biology. Environmental Health Perspectives, 117(2), 155158.CrossRefGoogle Scholar
Ziska, L. H., Gebhard, D. E., Frenz, D. A., et al. (2003). Cities as harbingers of climate change: common ragweed, urbanization, and public health. The Journal of Allergy and Clinical Immunology, 111(2), 290295.CrossRefGoogle ScholarPubMed
Ziska, L. H., George, K., Frenz, D. A. (2007). Establishment and persistence of common ragweed (Ambrosia artemisiifolia L.) in disturbed soil as a function of an urban-rural macro-environment. Global Change Biology, 13(1), 266274.CrossRefGoogle Scholar
Ziska, L., Knowlton, K., Rogers, C., et al. (2011). Recent warming by latitude associated with increased length of ragweed pollen season in central North America. Proceedings of the National Academy of Sciences of the United States of America, 108(10), 42484251.CrossRefGoogle ScholarPubMed
Zureik, M., Neukirch, C., Leynaert, B., et al. (2002). Sensitisation to airborne moulds and severity of asthma: cross sectional study from European Community respiratory health survey. British Medical Journal, 325(7361), 411418.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×