Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-29T00:11:24.942Z Has data issue: false hasContentIssue false

7 - Impacts of Climate Change on Indoor Allergens

Published online by Cambridge University Press:  05 August 2016

Paul J. Beggs
Affiliation:
Macquarie University, Sydney
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, M., Downs, S., Mitakakis, T., Leuppi, J., Marks, G. (2003). Natural exposure to Alternaria spores induces allergic rhinitis symptoms in sensitized children. Pediatric Allergy and Immunology, 14(2), 100105.CrossRefGoogle ScholarPubMed
Arbes Jr, S. J., Cohn, R. D., Yin, M., et al. (2003). House dust mite allergen in US beds: results from the first National Survey of Lead and Allergens in Housing. The Journal of Allergy and Clinical Immunology, 111(2), 408414.CrossRefGoogle ScholarPubMed
Arbes Jr, S. J., Gergen, P. J., Elliott, L., Zeldin, D. C. (2005). Prevalences of positive skin test responses to 10 common allergens in the US population: results from the Third National Health and Nutrition Examination Survey. The Journal of Allergy and Clinical Immunology, 116(2), 377383.CrossRefGoogle ScholarPubMed
Arlian, L. G. (1975). Dehydration and survival of the European house dust mite, Dermatophagoides pteronyssinus. Journal of Medical Entomology, 12(4), 437442.CrossRefGoogle ScholarPubMed
Arlian, L. G., Neal, J. S., Morgan, M. S., et al. (2001). Reducing relative humidity is a practical way to control dust mites and their allergens in homes in temperate climates. The Journal of Allergy and Clinical Immunology, 107(1), 99104.CrossRefGoogle ScholarPubMed
Arruda, L. K., Rizzo, M. C., Chapman, M. D., et al. (1991). Exposure and sensitization to dust mite allergens among asthmatic children in São Paulo, Brazil. Clinical and Experimental Allergy, 21(4), 433439.Google ScholarPubMed
Arruda, L. K., Vailes, L. D., Platts-Mills, T. A. E., et al. (1997). Sensitization to Blomia tropicalis in patients with asthma and identification of allergen Blo t 5. American Journal of Respiratory and Critical Care Medicine, 155(1), 343350.CrossRefGoogle ScholarPubMed
Asher, M. I., Keil, U., Anderson, H. R., et al. (1995). International study of asthma and allergies in childhood (ISAAC): rationale and methods. European Respiratory Journal, 8(3), 483491.CrossRefGoogle Scholar
Barbeau, D. N., Grimsley, L. F., White, L. E., El-Dahr, J. M., Lichtveld, M. (2010). Mold exposure and health effects following hurricanes Katrina and Rita. Annual Review of Public Health, 31, 165178.CrossRefGoogle Scholar
Black, P. N., Udy, A. A., Brodie, S. M. (2000). Sensitivity to fungal allergens is a risk factor for life-threatening asthma. Allergy, 55(5), 501504.CrossRefGoogle ScholarPubMed
Boner, A., Pescollderungg, L., Silverman, M. (2002). The role of house dust mite elimination in the management of childhood asthma: an unresolved issue. Allergy, 57(Suppl 74), 2331.CrossRefGoogle ScholarPubMed
Brunekreef, B., Dockery, D. W., Speizer, F. E., et al. (1989). Home dampness and respiratory morbidity in children. American Review of Respiratory Disease, 140(5), 13631367.CrossRefGoogle ScholarPubMed
Brunst, K. J., Ryan, P. H., Lockey, J. E., et al. (2012). Unraveling the relationship between aeroallergen sensitization, gender, second-hand smoke exposure, and impaired lung function. Pediatric Allergy and Immunology, 23(5), 479487.CrossRefGoogle ScholarPubMed
Chew, G. L., Burge, H. A., Dockery, D. W., et al. (1998). Limitations of a home characteristics questionnaire as a predictor of indoor allergen levels. American Journal of Respiratory and Critical Care Medicine, 157(5), 15361541.CrossRefGoogle ScholarPubMed
Chew, G. L., Carlton, E. J., Kass, D., et al. (2006a). Determinants of cockroach and mouse exposure and associations with asthma in families and elderly individuals living in New York City public housing. Annals of Allergy, Asthma & Immunology, 97(4), 502513.CrossRefGoogle ScholarPubMed
Chew, G. L., Higgins, K. M., Gold, D. R., Muilenberg, M. L., Burge, H. A. (1999). Monthly measurements of indoor allergens and the influence of housing type in a northeastern US city. Allergy, 54(10), 10581066.CrossRefGoogle Scholar
Chew, G. L., Perzanowski, M. S., Canfield, S. M., et al. (2008). Cockroach allergen levels and associations with cockroach-specific IgE. The Journal of Allergy and Clinical Immunology, 121(1), 240245.CrossRefGoogle ScholarPubMed
Chew, G. L., Perzanowski, M. S., Miller, R. L., et al. (2003a). Distribution and determinants of mouse allergen exposure in low-income New York City apartments. Environmental Health Perspectives, 111(10), 13481351.CrossRefGoogle ScholarPubMed
Chew, G. L., Rogers, C., Burge, H. A., Muilenberg, M. L., Gold, D. R. (2003b). Dustborne and airborne fungal propagules represent a different spectrum of fungi with differing relations to home characteristics. Allergy, 58(1), 1320.CrossRefGoogle ScholarPubMed
Chew, G. L., Wilson, J., Rabito, F. A., et al. (2006b). Mold and endotoxin levels in the aftermath of Hurricane Katrina: a pilot project of homes in New Orleans undergoing renovation. Environmental Health Perspectives, 114(12), 18831889.CrossRefGoogle ScholarPubMed
Colloff, M. J. (2009). Dust Mites. Collingwood: CSIRO Publishing.Google Scholar
Cruz, A., Saenz de Santamaría, M., Martínez, J., et al. (1997). Fungal allergens from important allergenic fungi imperfecti. Allergologia et Immunopathologia, 25(3), 153158.Google ScholarPubMed
Custovic, A., Simpson, B. M., Simpson, A., et al. (2003). Current mite, cat, and dog allergen exposure, pet ownership, and sensitization to inhalant allergens in adults. The Journal of Allergy and Clinical Immunology, 111(2), 402407.CrossRefGoogle Scholar
de Blay, F., Sanchez, J., Hedelin, G., et al. (1997). Dust and airborne exposure to allergens derived from cockroach (Blattella germanica) in low-cost public housing in Strasbourg (France). The Journal of Allergy and Clinical Immunology, 99(1), 107112.CrossRefGoogle ScholarPubMed
Douwes, J. (2005). (1→3)-β-D-glucans and respiratory health: a review of the scientific evidence. Indoor Air, 15(3), 160169.CrossRefGoogle Scholar
Downs, S. H., Mitakakis, T. Z., Marks, G. B., et al. (2001). Clinical importance of Alternaria exposure in children. American Journal of Respiratory and Critical Care Medicine, 164(3), 455459.CrossRefGoogle ScholarPubMed
Energy Information Administration (2011). Residential Energy Consumption Survey (RECS), 2009. Available at: www.eia.gov/consumption/residential/reports/2009/air-conditioning.cfm. Accessed 29 April 2016.Google Scholar
Esch, R. E. (2004). Manufacturing and standardizing fungal allergen products. The Journal of Allergy and Clinical Immunology, 113(2), 210215.CrossRefGoogle ScholarPubMed
Fernández-Caldas, E., Puerta, L., Mercado, D., Lockey, R. F., Caraballo, L. R. (1993). Mite fauna, Der p I, Der f I and Blomia tropicalis allergen levels in a tropical environment. Clinical and Experimental Allergy, 23(4), 292297.CrossRefGoogle Scholar
Fung, F., Tappen, D., Wood, G. (2000). Alternaria-associated asthma. Applied Occupational and Environmental Hygiene, 15(12), 924927.CrossRefGoogle ScholarPubMed
Gehring, U., Douwes, J., Doekes, G., et al. (2001). β(1→3)-glucan in house dust of German homes: housing characteristics, occupant behavior, and relations with endotoxins, allergens, and molds. Environmental Health Perspectives, 109(2), 139144.Google Scholar
Gold, D. R., Acevedo-Garcia, D. (2005). Immigration to the United States and acculturation as risk factors for asthma and allergy. The Journal of Allergy and Clinical Immunology, 116(1), 3841.CrossRefGoogle Scholar
Gravesen, S. (1978). Identification and prevalence of culturable mesophilic microfungi in house dust from 100 Danish homes: comparison between airborne and dust-bound fungi. Allergy, 33(5), 268272.CrossRefGoogle ScholarPubMed
Green, B. J., Mitakakis, T. Z., Tovey, E. R. (2003). Allergen detection from 11 fungal species before and after germination. The Journal of Allergy and Clinical Immunology, 111(2), 285289.CrossRefGoogle ScholarPubMed
Green, B. J., Sercombe, J. K., Tovey, E. R. (2005). Fungal fragments and undocumented conidia function as new aeroallergen sources. The Journal of Allergy and Clinical Immunology, 115(5), 10431048.CrossRefGoogle ScholarPubMed
Grimsley, L. F., Wildfire, J., Lichtveld, M., et al. (2012). Few associations found between mold and other allergen concentrations in the home versus skin sensitivity from children with asthma after Hurricane Katrina in the Head-off Environmental Asthma in Louisiana study. International Journal of Pediatrics, 2012, 427358.CrossRefGoogle ScholarPubMed
Gruchalla, R. S. (2000). Allergy skin test results of 942 urban asthmatic children: the Inner City Asthma Study (ICAS). The Journal of Allergy and Clinical Immunology, 105(1), S368S369.CrossRefGoogle Scholar
Gruchalla, R. S., Pongracic, J., Plaut, M., et al. (2005). Inner City Asthma Study: relationships among sensitivity, allergen exposure, and asthma morbidity. The Journal of Allergy and Clinical Immunology, 115(3), 478485.CrossRefGoogle ScholarPubMed
Halonen, M., Stern, D. A., Wright, A. L., Taussig, L. M., Martinez, F. D. (1997). Alternaria as a major allergen for asthma in children raised in a desert environment. American Journal of Respiratory and Critical Care Medicine, 155(4), 13561361.CrossRefGoogle Scholar
Hasnain, S. M., Wilson, J. D., Newhook, F. J. (1985). Fungi and disease: fungal allergy and respiratory disease. New Zealand Medical Journal, 98(778), 342346.Google ScholarPubMed
Helbling, A., Reese, G., Horner, W. E., Lehrer, S. B. (1994). Aktuelles zur pilzsporen-allergie [Current knowledge on fungal spore allergy]. Schweizerische Medizinische Wochenschrift, 124(21), 885892.Google Scholar
Horner, W. E., Helbling, A., Salvaggio, J. E., Lehrer, S. B. (1995). Fungal allergens. Clinical Microbiology Reviews, 8(2), 161179.CrossRefGoogle ScholarPubMed
Illi, S., von Mutius, E., Lau, S., et al. (2006). Perennial allergen sensitisation early in life and chronic asthma in children: a birth cohort study. The Lancet, 368(9537), 763770.CrossRefGoogle ScholarPubMed
Ingram, J. M., Sporik, R., Rose, G., et al. (1995). Quantitative assessment of exposure to dog (Can f 1) and cat (Fel d 1) allergens: relation to sensitization and asthma among children living in Los Alamos, New Mexico. The Journal of Allergy and Clinical Immunology, 96(4), 449456.CrossRefGoogle Scholar
Iossifova, Y. Y., Reponen, T., Bernstein, D. I., et al. (2007). House dust (1–3)-β-D-glucan and wheezing in infants. Allergy, 62(5), 504513.CrossRefGoogle ScholarPubMed
IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T. F., Qin, D., Plattner, G.-K., et al., eds.]. Cambridge, UK and New York, NY: Cambridge University Press.Google Scholar
Jaakkola, J. J. K., Hwang, B.-F., Jaakkola, N. (2005). Home dampness and molds, parental atopy, and asthma in childhood: a six-year population-based cohort study. Environmental Health Perspectives, 113(3), 357361.CrossRefGoogle ScholarPubMed
Kitch, B. T., Chew, G., Burge, H. A., et al. (2000). Socioeconomic predictors of high allergen levels in homes in the greater Boston area. Environmental Health Perspectives, 108(4), 301307.CrossRefGoogle ScholarPubMed
Lane, J., Siebers, R., Pene, G., Howden-Chapman, P., Crane, J. (2005). Tokelau: a unique low allergen environment at sea level. Clinical and Experimental Allergy, 35(4), 479482.CrossRefGoogle ScholarPubMed
Lehrer, S. B., Lopez, M., Butcher, B. T., et al. (1986). Basidiomycete mycelia and spore-allergen extracts: skin test reactivity in adults with symptoms of respiratory allergy. The Journal of Allergy and Clinical Immunology, 78(3), 478485.CrossRefGoogle ScholarPubMed
Licorish, K., Novey, H. S., Kozak, P., Fairshter, R. D., Wilson, A. F. (1985). Role of Alternaria and Penicillium spores in the pathogenesis of asthma. The Journal of Allergy and Clinical Immunology, 76(6), 819825.CrossRefGoogle ScholarPubMed
Lin, S., Jones, R., Munsie, J. P., et al. (2012). Childhood asthma and indoor allergen exposure and sensitization in Buffalo, New York. International Journal of Hygiene and Environmental Health, 215(3), 297305.CrossRefGoogle ScholarPubMed
Lintner, T. J., Brame, K. A. (1993). The effects of season, climate, and air-conditioning on the prevalence of Dermatophagoides mite allergens in household dust. The Journal of Allergy and Clinical Immunology, 91(4), 862867.CrossRefGoogle ScholarPubMed
Mahesh, P. A., Kummeling, I., Amrutha, D. H., Vedanthan, P. K. (2010). Effect of area of residence on patterns of aeroallergen sensitization in atopic patients. American Journal of Rhinology & Allergy, 24(5), e98e103.CrossRefGoogle ScholarPubMed
Martinez, F. D., Wright, A. L., Taussig, L. M., et al. (1995). Asthma and wheezing in the first six years of life. The New England Journal of Medicine, 332(3), 133138.CrossRefGoogle ScholarPubMed
Matsui, E. C., Eggleston, P. A., Buckley, T. J., et al. (2006). Household mouse allergen exposure and asthma morbidity in inner-city preschool children. Annals of Allergy, Asthma & Immunology, 97(4), 514520.CrossRefGoogle ScholarPubMed
Matsui, E. C., Simons, E., Rand, C., et al. (2005). Airborne mouse allergen in the homes of inner-city children with asthma. The Journal of Allergy and Clinical Immunology, 115(2), 358363.CrossRefGoogle ScholarPubMed
Matsui, E. C., Wood, R. A., Rand, C., et al. (2003). Cockroach allergen exposure and sensitization in suburban middle-class children with asthma. The Journal of Allergy and Clinical Immunology, 112(1), 8792.CrossRefGoogle ScholarPubMed
Matsui, E. C., Wood, R. A., Rand, C., et al. (2004). Mouse allergen exposure and mouse skin test sensitivity in suburban, middle-class children with asthma. The Journal of Allergy and Clinical Immunology, 113(5), 910915.CrossRefGoogle ScholarPubMed
Mavrogianni, A., Johnson, F., Ucci, M., et al. (2013). Historic variations in winter indoor domestic temperatures and potential implications for body weight gain. Indoor and Built Environment, 22(2), 360375.CrossRefGoogle ScholarPubMed
Mitakakis, T. Z., Barnes, C., Tovey, E. R. (2001). Spore germination increases allergen release from Alternaria. The Journal of Allergy and Clinical Immunology, 107(2), 388390.CrossRefGoogle ScholarPubMed
Montealegre, F., Quiñones, C., Michelen, V., et al. (1997b). Prevalence of skin reactions to aeroallergens in asthmatics of Puerto Rico. The Puerto Rico Health Sciences Journal, 16(4), 359367.Google ScholarPubMed
Montealegre, F., Sepulveda, A., Bayona, M., Quinones, C., Fernandez-Caldas, E. (1997a). Identification of the domestic mite fauna of Puerto Rico. The Puerto Rico Health Sciences Journal, 16(2), 109116.Google ScholarPubMed
Nazario, S., Casal, J., Rodriguez, W., et al. (2000). Aeroallergen sensitivities in children attending public schools in San Juan, Puerto Rico. The Journal of Allergy and Clinical Immunology, 105(1), S235.CrossRefGoogle Scholar
Negrini, A. C., Berra, D., Campi, P., et al. (2000). Clinical study on Alternaria spores sensitization. Allergologia et Immunopathologia, 28(2), 7173.Google ScholarPubMed
Neukirch, C., Henry, C., Leynaert, B., et al. (1999). Is sensitization to Alternaria alternata a risk factor for severe asthma? A population-based study. The Journal of Allergy and Clinical Immunology, 103(4), 709711.CrossRefGoogle ScholarPubMed
O’Hollaren, M. T., Yunginger, J. W., Offord, K. P., et al. (1991). Exposure to an aeroallergen as a possible precipitating factor in respiratory arrest in young patients with asthma. The New England Journal of Medicine, 324(6), 359363.CrossRefGoogle Scholar
Olmedo, O., Goldstein, I. F., Acosta, L., et al. (2011). Neighborhood differences in exposure and sensitization to cockroach, mouse, dust mite, cat, and dog allergens in New York City. The Journal of Allergy and Clinical Immunology, 128(2), 284292.CrossRefGoogle Scholar
Peat, J. K., Tovey, E., Toelle, B. G., et al. (1996). House dust mite allergens: a major risk factor for childhood asthma in Australia. American Journal of Respiratory and Critical Care Medicine, 153(1), 141146.CrossRefGoogle Scholar
Perry, T. T., Rettiganti, M., Brown, R. H., Nick, T. G., Jones, S. M. (2012). Uncontrolled asthma and factors related to morbidity in an impoverished, rural environment. Annals of Allergy, Asthma & Immunology, 108(4), 254259.CrossRefGoogle Scholar
Perzanowski, M. S., Rönmark, E., Platts-Mills, T. A. E., Lundbäck, B. (2002). Effect of cat and dog ownership on sensitization and development of asthma among preteenage children. American Journal of Respiratory and Critical Care Medicine, 166(5), 696702.CrossRefGoogle Scholar
Perzanowski, M. S., Sporik, R., Squillace, S. P., et al. (1998). Association of sensitization to Alternaria allergens with asthma among school-age children. The Journal of Allergy and Clinical Immunology, 101(5), 626632.CrossRefGoogle ScholarPubMed
Phipatanakul, W., Eggleston, P. A., Wright, E. C., Wood, R. A. (2000a). Risk factors for sensitization to mouse allergen in inner-city children with asthma. The Journal of Allergy and Clinical Immunology, 105(1), S79.CrossRefGoogle Scholar
Phipatanakul, W., Eggleston, P. A., Wright, E. C., Wood, R. A., and the National Cooperative Inner-City Asthma Study (2000b). Mouse allergen. I. The prevalence of mouse allergen in inner-city homes. The Journal of Allergy and Clinical Immunology, 106(6), 10701074.CrossRefGoogle ScholarPubMed
Phipatanakul, W., Eggleston, P. A., Wright, E. C., Wood, R. A., and the National Cooperative Inner-City Asthma Study (2000c). Mouse allergen. II. The relationship of mouse allergen exposure to mouse sensitization and asthma morbidity in inner-city children with asthma. The Journal of Allergy and Clinical Immunology, 106(6), 10751080.CrossRefGoogle ScholarPubMed
Phipatanakul, W., Gold, D. R., Muilenberg, M., et al. (2005). Predictors of indoor exposure to mouse allergen in urban and suburban homes in Boston. Allergy, 60(5), 697701.CrossRefGoogle Scholar
Phipatanakul, W., Matsui, E., Portnoy, J., et al. (2012). Environmental assessment and exposure reduction of rodents: a practice parameter. Annals of Allergy, Asthma & Immunology, 109(6), 375387.CrossRefGoogle ScholarPubMed
Platts-Mills, T. A. E., de Weck, A. L., Aalberse, R. C., et al. (1989). Dust mite allergens and asthma – a worldwide problem. The Journal of Allergy and Clinical Immunology, 83(2), 416427.Google Scholar
Platts-Mills, T. A. E., Vervloet, D., Thomas, W. R., Aalberse, R. C., Chapman, M. D. (1997). Indoor allergens and asthma: report of the Third International Workshop. The Journal of Allergy and Clinical Immunology, 100(6), S2S24.CrossRefGoogle ScholarPubMed
Pongracic, J. A., O’Connor, G. T., Muilenberg, M. L., et al. (2010). Differential effects of outdoor versus indoor fungal spores on asthma morbidity in inner-city children. The Journal of Allergy and Clinical Immunology, 125(3), 593599.CrossRefGoogle ScholarPubMed
Portnoy, J., Chapman, J., Burge, H., Muilenberg, M., Solomon, W. (1987). Epicoccum allergy: skin reaction patterns and spore/mycelium disparities recognized by IgG and IgE ELISA inhibition. Annals of Allergy, 59(1), 3943.Google ScholarPubMed
Portnoy, J., Chew, G. L., Phipatanakul, W., et al. (2013). Environmental assessment and exposure reduction of cockroaches: a practice parameter. The Journal of Allergy and Clinical Immunology, 132(4), 802808, 808.e1808.e25.CrossRefGoogle ScholarPubMed
Prasad, C., Hogan, M. B., Peele, K., Wilson, N. W. (2009). Effect of evaporative coolers on skin test reactivity to dust mites and molds in a desert environment. Allergy and Asthma Proceedings, 30(6), 624627.CrossRefGoogle Scholar
Rabito, F. A., Iqbal, S., Kiernan, M. P., Holt, E., Chew, G. L. (2008). Children’s respiratory health and mold levels in New Orleans after Katrina: a preliminary look. The Journal of Allergy and Clinical Immunology, 121(3), 622625.CrossRefGoogle ScholarPubMed
Rabito, F. A., Perry, S., Davis, W. E., Yau, C. L., Levetin, E. (2010). The relationship between mold exposure and allergic response in post-Katrina New Orleans. Journal of Allergy, 2010, 510380.CrossRefGoogle ScholarPubMed
Rose, G., Arlian, L., Bernstein, D., et al. (1996). Evaluation of household dust mite exposure and levels of specific IgE and IgG antibodies in asthmatic patients enrolled in a trial of immunotherapy. The Journal of Allergy and Clinical Immunology, 97(5), 10711078.CrossRefGoogle Scholar
Rosenfeld, L., Rudd, R., Chew, G. L., Emmons, K., Acevedo-García, D. (2010). Are neighborhood-level characteristics associated with indoor allergens in the household? Journal of Asthma, 47(1), 6675.CrossRefGoogle ScholarPubMed
Rosenstreich, D. L., Eggleston, P., Kattan, M., et al. (1997). The role of cockroach allergy and exposure to cockroach allergen in causing morbidity among inner-city children with asthma. The New England Journal of Medicine, 336(19), 13561363.CrossRefGoogle ScholarPubMed
Ross, M. A., Curtis, L., Scheff, P. A., et al. (2000). Association of asthma symptoms and severity with indoor bioaerosols. Allergy, 55(8), 705711.CrossRefGoogle ScholarPubMed
Ross, M. A., Persky, V. W., Scheff, P. A., et al. (2002). Effect of ozone and aeroallergens on the respiratory health of asthmatics. Archives of Environmental Health, 57(6), 568578.CrossRefGoogle ScholarPubMed
Salo, P. M., Calatroni, A., Gergen, P. J., et al. (2011). Allergy-related outcomes in relation to serum IgE: results from the National Health and Nutrition Examination Survey 2005–2006. The Journal of Allergy and Clinical Immunology, 127(5), 12261235.e7.CrossRefGoogle ScholarPubMed
Salo, P. M., Yin, M., Arbes Jr, S. J., et al. (2005). Dustborne Alternaria alternata antigens in US homes: results from the National Survey of Lead and Allergens in Housing. The Journal of Allergy and Clinical Immunology, 116(3), 623629.CrossRefGoogle ScholarPubMed
Santilli Jr, J., Rockwell, W. J., Collins, R. P. (1985). The significance of the spores of the Basidiomycetes (mushrooms and their allies) in bronchial asthma and allergic rhinitis. Annals of Allergy, 55(3), 469471.Google ScholarPubMed
Santilli Jr, J., Rockwell, W. J., Collins, R. P. (1990). Individual patterns of immediate skin reactivity to mold extracts. Annals of Allergy, 65(6), 454458.Google ScholarPubMed
Schumacher, M. J., Tait, B. D., Holmes, M. C. (1981). Allergy to murine antigens in a biological research institute. The Journal of Allergy and Clinical Immunology, 68(4), 310318.CrossRefGoogle Scholar
Sears, M. R., Herbison, G. P., Holdaway, M. D., et al. (1989). The relative risks of sensitivity to grass pollen, house dust mite and cat dander in the development of childhood asthma. Clinical and Experimental Allergy, 19(4), 419424.CrossRefGoogle ScholarPubMed
Simon-Nobbe, B., Denk, U., Pöll, V., Rid, R., Breitenbach, M. (2008). The spectrum of fungal allergy. International Archives of Allergy and Immunology, 145(1), 5886.CrossRefGoogle ScholarPubMed
Sprenger, J. D., Altman, L. C., O’Neil, C. E., et al. (1988). Prevalence of basidiospore allergy in the Pacific Northwest. The Journal of Allergy and Clinical Immunology, 82(6), 10761080.CrossRefGoogle ScholarPubMed
Stelmach, I., Jerzynska, J., Stelmach, W., et al. (2002). Cockroach allergy and exposure to cockroach allergen in Polish children with asthma. Allergy, 57(8), 701705.CrossRefGoogle ScholarPubMed
Stevens, W., Addo-Yobo, E., Roper, J., et al. (2011). Differences in both prevalence and titre of specific immunoglobulin E among children with asthma in affluent and poor communities within a large town in Ghana. Clinical & Experimental Allergy, 41(11), 15871594.CrossRefGoogle ScholarPubMed
Sundell, J., Wickman, M., Pershagen, G., Nordvall, S. L. (1995). Ventilation in homes infested by house-dust mites. Allergy, 50(2), 106112.CrossRefGoogle ScholarPubMed
Szánthó, A., Osváth, P., Horváth, Zs., Novák, E. K., Kujalek, É. (1992). Study of mold allergy in asthmatic children in Hungary. Journal of Investigational Allergology and Clinical Immunology, 2(2), 8490.Google ScholarPubMed
Tovey, E. R., Chapman, M. D., Platts-Mills, T. A. E. (1981). Mite faeces are a major source of house dust allergens. Nature, 289(5798), 592593.CrossRefGoogle Scholar
Tovey, E., DeLucca, S., Pavlicek, P., et al. (2000). The morphology of particles carrying mite, dog, cockroach, and cat aeroallergens affects their efficiency of collection by nasal samplers and cascade impactors. The Journal of Allergy and Clinical Immunology, 105(1), S228.CrossRefGoogle Scholar
van Strien, R. T., Verhoeff, A. P., Brunekreef, B., van Wijnen, J. H. (1994). Mite antigen in house dust: relationship with different housing characteristics in the Netherlands. Clinical and Experimental Allergy, 24(9), 843853.CrossRefGoogle ScholarPubMed
Venables, K. M., Tee, R. D., Hawkins, E. R., et al. (1988). Laboratory animal allergy in a pharmaceutical company. British Journal of Industrial Medicine, 45(10), 660666.Google Scholar
Vijay, H. M., Kurup, V. P. (2004). Fungal allergens. Clinical Allergy and Immunology, 18, 223249.Google ScholarPubMed
Wahn, U., Lau, S., Bergmann, R., et al. (1997). Indoor allergen exposure is a risk factor for sensitization during the first three years of life. The Journal of Allergy and Clinical Immunology, 99(6), 763769.CrossRefGoogle ScholarPubMed
Wålinder, R., Ernstgård, L., Johanson, G., et al. (2005). Acute effects of a fungal volatile compound. Environmental Health Perspectives, 113(12), 17751778.CrossRefGoogle ScholarPubMed
Wickens, K., Mason, K., Fitzharris, P., et al. (2001). The importance of housing characteristics in determining Der p 1 levels in carpets in New Zealand homes. Clinical and Experimental Allergy, 31(6), 827835.CrossRefGoogle ScholarPubMed
Wood, R. A., Eggleston, P. A., Lind, P., et al. (1988). Antigenic analysis of household dust samples. American Review of Respiratory Disease, 137(2), 358363.CrossRefGoogle ScholarPubMed
Zureik, M., Neukirch, C., Leynaert, B., et al. (2002). Sensitisation to airborne moulds and severity of asthma: cross sectional study from European Community respiratory health survey. British Medical Journal, 325(7361), 411417.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×