Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-25T04:29:03.447Z Has data issue: false hasContentIssue false

9 - Impacts of Climate Change on Allergic Diseases

Published online by Cambridge University Press:  05 August 2016

Paul J. Beggs
Affiliation:
Macquarie University, Sydney
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agarwal, R., Gupta, D. (2011). Severe asthma and fungi: current evidence. Medical Mycology, 49(Suppl 1), S150S157.CrossRefGoogle ScholarPubMed
Akdis, C. A., Agache, I., eds. (2013). Global Atlas of Asthma. Zurich: European Academy of Allergy and Clinical Immunology.Google Scholar
Ariano, R., Canonica, G. W., Passalacqua, G. (2010). Possible role of climate changes in variations in pollen seasons and allergic sensitizations during 27 years. Annals of Allergy, Asthma & Immunology, 104(3), 215222.CrossRefGoogle Scholar
Asher, M. I., Montefort, S., Björkstén, B., et al. (2006). Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. The Lancet, 368(9537), 733743.CrossRefGoogle ScholarPubMed
Babin, S. M., Burkom, H. S., Holtry, R. S., et al. (2007). Pediatric patient asthma-related emergency department visits and admissions in Washington, DC, from 2001–2004, and associations with air quality, socio-economic status and age group. Environmental Health, 6, 9.CrossRefGoogle ScholarPubMed
Bahadori, K., Doyle-Waters, M. M., Marra, C., et al. (2009). Economic burden of asthma: a systematic review. BMC Pulmonary Medicine, 9, 24.CrossRefGoogle ScholarPubMed
Beggs, P. J. (2004). Impacts of climate change on aeroallergens: past and future. Clinical and Experimental Allergy, 34(10), 15071513.CrossRefGoogle ScholarPubMed
Beggs, P. J., Bambrick, H. J. (2005). Is the global rise of asthma an early impact of anthropogenic climate change? Environmental Health Perspectives, 113(8), 915919.CrossRefGoogle ScholarPubMed
Bellomo, R., Gigliotti, P., Treloar, A., et al. (1992). Two consecutive thunderstorm associated epidemics of asthma in the city of Melbourne. The possible role of rye grass pollen. The Medical Journal of Australia, 156(12), 834837.CrossRefGoogle ScholarPubMed
Biagini, J. M., LeMasters, G. K., Ryan, P. H., et al. (2006). Environmental risk factors of rhinitis in early infancy. Pediatric Allergy and Immunology, 17(4), 278284.CrossRefGoogle ScholarPubMed
Bielory, L., Friedlaender, M. H. (2008). Allergic conjunctivitis. Immunology and Allergy Clinics of North America, 28(1), 4358.CrossRefGoogle ScholarPubMed
Blackley, C. H. (1880). Hay Fever: Its Causes, Treatment, and Effective Prevention. Experimental Researches, 2nd edn. London: Baillière, Tindall, & Cox.Google Scholar
Borish, L. (2003). Allergic rhinitis: systemic inflammation and implications for management. The Journal of Allergy and Clinical Immunology, 112(6), 10211031.CrossRefGoogle ScholarPubMed
Breton, M.-C., Garneau, M., Fortier, I., Guay, F., Louis, J. (2006). Relationship between climate, pollen concentrations of Ambrosia and medical consultations for allergic rhinitis in Montreal, 1994–2002. Science of the Total Environment, 370(1), 3950.CrossRefGoogle ScholarPubMed
Burney, P., Chinn, S., Jarvis, D., et al. (1996).Variations in the prevalence of respiratory symptoms, self-reported asthma attacks, and use of asthma medication in the European Community Respiratory Health Survey (ECRHS). European Respiratory Journal, 9(4), 687695.Google Scholar
Burney, P. G. J., Potts, J., Kummeling, I., et al. (2014). The prevalence and distribution of food sensitization in European adults. Allergy, 69(3), 365371.CrossRefGoogle ScholarPubMed
Burr, M. L., Emberlin, J. C., Treu, R., et al. (2003). Pollen counts in relation to the prevalence of allergic rhinoconjunctivitis, asthma and atopic eczema in the International Study of Asthma and Allergies in Childhood (ISAAC). Clinical and Experimental Allergy, 33(12), 16751680.CrossRefGoogle Scholar
Carlsen, K. H., Ørstavik, I., Leegaard, J., Høeg, H. (1984). Respiratory virus infections and aeroallergens in acute bronchial asthma. Archives of Disease in Childhood, 59(4), 310315.CrossRefGoogle ScholarPubMed
Cecchi, L., D’Amato, G., Ayres, J. G., et al. (2010). Projections of the effects of climate change on allergic asthma: the contribution of aerobiology. Allergy, 65(9), 10731081.CrossRefGoogle ScholarPubMed
Celenza, A., Fothergill, J., Kupek, E., Shaw, R. J. (1996). Thunderstorm associated asthma: a detailed analysis of environmental factors. BMJ-British Medical Journal, 312(7031), 604607.CrossRefGoogle ScholarPubMed
Charpin, D., Hughes, B., Mallea, M., et al. (1993). Seasonal allergic symptoms and their relation to pollen exposure in south-east France. Clinical and Experimental Allergy, 23(5), 435439.CrossRefGoogle ScholarPubMed
Chipps, B. E., Zeiger, R. S., Borish, L., et al. (2012). Key findings and clinical implications from The Epidemiology and Natural History of Asthma: Outcomes and Treatment Regimens (TENOR) study. The Journal of Allergy and Clinical Immunology, 130(2), 332342.e10.CrossRefGoogle ScholarPubMed
Craig, T. J. (2010). Aeroallergen sensitization in asthma: prevalence and correlation with severity. Allergy and Asthma Proceedings, 31(2), 96102.CrossRefGoogle ScholarPubMed
Crystal-Peters, J., Crown, W. H., Goetzel, R. Z., Schutt, D. C. (2000). The cost of productivity losses associated with allergic rhinitis. The American Journal of Managed Care, 6(3), 373378.Google ScholarPubMed
Dabrera, G., Murray, V., Emberlin, J., et al. (2013). Thunderstorm asthma: an overview of the evidence base and implications for public health advice. QJMed-An International Journal of Medicine, 106(3), 207217.CrossRefGoogle ScholarPubMed
Dales, R. E., Cakmak, S., Burnett, R. T., Judek, S., Coates, F., Brook, J. R. (2000). Influence of ambient fungal spores on emergency visits for asthma to a regional children’s hospital. American Journal of Respiratory and Critical Care Medicine, 162(6), 20872090.CrossRefGoogle ScholarPubMed
Dales, R. E., Cakmak, S., Judek, S., et al. (2003). The role of fungal spores in thunderstorm asthma. Chest, 123(3), 745750.CrossRefGoogle ScholarPubMed
Dales, R. E., Cakmak, S., Judek, S., et al. (2004). Influence of outdoor aeroallergens on hospitalization for asthma in Canada. The Journal of Allergy and Clinical Immunology, 113(2), 303306.CrossRefGoogle ScholarPubMed
D’Amato, G., Cecchi, L. (2008). Effects of climate change on environmental factors in respiratory allergic diseases. Clinical and Experimental Allergy, 38(8), 12641274.CrossRefGoogle ScholarPubMed
Darrow, L. A., Hess, J., Rogers, C. A., Tolbert, P. E., Klein, M., Sarnat, S. E. (2012). Ambient pollen concentrations and emergency department visits for asthma and wheeze. The Journal of Allergy and Clinical Immunology, 130(3), 630638.e4.CrossRefGoogle ScholarPubMed
Decker, W. W., Campbell, R. L., Manivannan, V., et al. (2008). The etiology and incidence of anaphylaxis in Rochester, Minnesota: a report from the Rochester Epidemiology Project. The Journal of Allergy and Clinical Immunology, 122(6), 11611165.CrossRefGoogle ScholarPubMed
Denning, D. W., O’Driscoll, B. R., Hogaboam, C. M., Bowyer, P., Niven, R. M. (2006). The link between fungi and severe asthma: a summary of the evidence. European Respiratory Journal, 27(3), 615626.CrossRefGoogle ScholarPubMed
Edwards, J., Walters, S., Griffiths, R. K. (1994). Hospital admissions for asthma in preschool children: relationship to major roads in Birmingham, United Kingdom. Archives of Environmental Health, 49(4), 223227.CrossRefGoogle ScholarPubMed
Epstein, P. R., Mills, E., eds. (2005). Climate Change Futures: Health, Ecological and Economic Dimensions. Boston: The Center for Health and the Global Environment, Harvard Medical School.Google Scholar
Erbas, B., Akram, M., Dharmage, S. C., et al. (2012). The role of seasonal grass pollen on childhood asthma emergency department presentations. Clinical & Experimental Allergy, 42(5), 799805.CrossRefGoogle ScholarPubMed
Fitter, A. H., Fitter, R. S. R. (2002). Rapid changes in flowering time in British plants. Science, 296(5573), 16891691.CrossRefGoogle ScholarPubMed
Galán, I., Prieto, A., Rubio, M., et al. (2010). Association between airborne pollen and epidemic asthma in Madrid, Spain: a case–control study. Thorax, 65(5), 398402.CrossRefGoogle ScholarPubMed
Gauderman, W. J., Vora, H., McConnell, R., et al. (2007). Effect of exposure to traffic on lung development from 10 to 18 years of age: a cohort study. The Lancet, 369(9561), 571577.CrossRefGoogle ScholarPubMed
Grundstein, A., Sarnat, S. E., Klein, M., et al. (2008). Thunderstorm associated asthma in Atlanta, Georgia. Thorax, 63(7), 659660.CrossRefGoogle ScholarPubMed
Guerra, S., Sherrill, D. L., Martinez, F. D., Barbee, R. A. (2002). Rhinitis as an independent risk factor for adult-onset asthma. The Journal of Allergy and Clinical Immunology, 109(3), 419425.CrossRefGoogle ScholarPubMed
Harley, K. G., Macher, J. M., Lipsett, M., et al. (2009). Fungi and pollen exposure in the first months of life and risk of early childhood wheezing. Thorax, 64(4), 353358.CrossRefGoogle ScholarPubMed
Héguy, L., Garneau, M., Goldberg, M. S., Raphoz, M., Guay, F., Valois, M.-F. (2008). Associations between grass and weed pollen and emergency department visits for asthma among children in Montreal. Environmental Research, 106(2), 203211.CrossRefGoogle ScholarPubMed
Hostetler, S. G., Kaffenberger, B., Hostetler, T., Zirwas, M. J. (2010). The role of airborne proteins in atopic dermatitis. The Journal of Clinical and Aesthetic Dermatology, 3(1), 2231.Google ScholarPubMed
Institute of Medicine (2004). Damp Indoor Spaces and Health. Washington, DC: The National Academies Press.Google Scholar
Ishizaki, T., Koizumi, K., Ikemori, R., Ishiyama, Y., Kushibiki, E. (1987). Studies of prevalence of Japanese cedar pollinosis among the residents in a densely cultivated area. Annals of Allergy, 58(4), 265270.Google Scholar
Jarvis, D., Newson, R., Lotvall, J., et al. (2012). Asthma in adults and its association with chronic rhinosinusitis: the GA2LEN survey in Europe. Allergy, 67(1), 9198.CrossRefGoogle ScholarPubMed
Jeong, S. K., Kim, H. J., Youm, J.-K., et al. (2008). Mite and cockroach allergens activate protease-activated receptor 2 and delay epidermal permeability barrier recovery. Journal of Investigative Dermatology, 128(8), 19301939.CrossRefGoogle ScholarPubMed
Katelaris, C. H. (2003). Ocular allergy: implications for the clinical immunologist. Annals of Allergy, Asthma & Immunology, 90(6 Suppl), 2327.CrossRefGoogle ScholarPubMed
Kercsmar, C. M., Dearborn, D. G., Schluchter, M., et al. (2006). Reduction in asthma morbidity in children as a result of home remediation aimed at moisture sources. Environmental Health Perspectives, 114(10), 15741580.CrossRefGoogle ScholarPubMed
Kim, H., Bernstein, J. A. (2009). Air pollution and allergic disease. Current Allergy and Asthma Reports, 9(2), 128133.CrossRefGoogle ScholarPubMed
Kulig, M., Klettke, U., Wahn, V., et al. (2000). Development of seasonal allergic rhinitis during the first 7 years of life. The Journal of Allergy and Clinical Immunology, 106(5), 832839.CrossRefGoogle ScholarPubMed
Lebowitz, M. D., Collins, L., Holberg, C. J. (1987). Time series analyses of respiratory responses to indoor and outdoor environmental phenomena. Environmental Research, 43(2), 332341.CrossRefGoogle ScholarPubMed
Lewis, S. A., Corden, J. M., Forster, G. E., Newlands, M. (2000). Combined effects of aerobiological pollutants, chemical pollutants and meteorological conditions on asthma admissions and A & E attendances in Derbyshire UK, 1993–96. Clinical and Experimental Allergy, 30(12), 17241732.CrossRefGoogle Scholar
Lierl, M. B., Hornung, R. W. (2003). Relationship of outdoor air quality to pediatric asthma exacerbations. Annals of Allergy, Asthma & Immunology, 90(1), 2833.CrossRefGoogle ScholarPubMed
Mancini, A. J., Kaulback, K., Chamlin, S. L. (2008). The socioeconomic impact of atopic dermatitis in the United States: a systematic review. Pediatric Dermatology, 25(1), 16.CrossRefGoogle ScholarPubMed
Manuel, J. (2006). In Katrina’s wake. Environmental Health Perspectives, 114(1), A32A39. (See correction in: Errata (2006). Environmental Health Perspectives, 114(2), A90.)CrossRefGoogle Scholar
Masoli, M., Fabian, D., Holt, S., Beasley, R., for the Global Initiative for Asthma (GINA) Program (2004). The global burden of asthma: executive summary of the GINA Dissemination Committee Report. Allergy, 59(5), 469478.CrossRefGoogle ScholarPubMed
McConnell, R., Berhane, K., Gilliland, F., et al. (2002). Asthma in exercising children exposed to ozone: a cohort study. The Lancet, 359(9304), 386391. (See correction in: Department of Error (2002). The Lancet, 359(9309), 896.)CrossRefGoogle ScholarPubMed
Mendell, M. J., Mirer, A. G., Cheung, K., Tong, M., Douwes, J. (2011). Respiratory and allergic health effects of dampness, mold, and dampness-related agents: a review of the epidemiologic evidence. Environmental Health Perspectives, 119(6), 748756.CrossRefGoogle ScholarPubMed
Menzel, A. (2000). Trends in phenological phases in Europe between 1951 and 1996. International Journal of Biometeorology, 44(2), 7681.CrossRefGoogle ScholarPubMed
Monteil, M. A., Juman, S., Hassanally, R., et al. (2000). Descriptive epidemiology of asthma in Trinidad, West Indies. Journal of Asthma, 37(8), 677684.CrossRefGoogle ScholarPubMed
Nakamura, T., Hirasawa, Y., Takai, T., et al. (2006). Reduction of skin barrier function by proteolytic activity of a recombinant house dust mite major allergen Der f 1. Journal of Investigative Dermatology, 126(12), 27192723.CrossRefGoogle ScholarPubMed
Nathan, R. A. (2007). The burden of allergic rhinitis. Allergy and Asthma Proceedings, 28(1), 39.CrossRefGoogle ScholarPubMed
Nicolai, T., Carr, D., Weiland, S. K., et al. (2003). Urban traffic and pollutant exposure related to respiratory outcomes and atopy in a large sample of children. European Respiratory Journal, 21(6), 956963.CrossRefGoogle Scholar
Ogershok, P. R., Warner, D. J., Hogan, M. B., Wilson, N. W. (2007). Prevalence of pollen sensitization in younger children who have asthma. Allergy and Asthma Proceedings, 28(6), 654658.CrossRefGoogle ScholarPubMed
Ozdoganoglu, T., Songu, M. (2012). The burden of allergic rhinitis and asthma. Therapeutic Advances in Respiratory Disease, 6(1), 1123.CrossRefGoogle ScholarPubMed
Packe, G. E., Ayres, J. G. (1985). Asthma outbreak during a thunderstorm. The Lancet, 326(8448), 199204.CrossRefGoogle Scholar
Peden, D., Reed, C. E. (2010). Environmental and occupational allergies. The Journal of Allergy and Clinical Immunology, 125(2 Suppl 2), S150S160.CrossRefGoogle ScholarPubMed
Pekkanen, J., Hyvärinen, A., Haverinen-Shaughnessy, U., et al. (2007). Moisture damage and childhood asthma: a population-based incident case-control study. European Respiratory Journal, 29(3), 509515.CrossRefGoogle ScholarPubMed
Pongracic, J. A., O’Connor, G. T., Muilenberg, M. L., et al. (2010). Differential effects of outdoor versus indoor fungal spores on asthma morbidity in inner-city children. The Journal of Allergy and Clinical Immunology, 125(3), 593599.CrossRefGoogle ScholarPubMed
Prospero, J. M., Blades, E., Naidu, R., et al. (2008). Relationship between African dust carried in the Atlantic trade winds and surges in pediatric asthma attendances in the Caribbean. International Journal of Biometeorology, 52(8), 823832.CrossRefGoogle ScholarPubMed
Rastogi, D., Reddy, M., Neugebauer, R. (2006). Comparison of patterns of allergen sensitization among inner-city Hispanic and African American children with asthma. Annals of Allergy, Asthma & Immunology, 97(5), 636642.CrossRefGoogle ScholarPubMed
Reid, C. E., Gamble, J. L. (2009). Aeroallergens, allergic disease, and climate change: impacts and adaptation. EcoHealth, 6(3), 458470.CrossRefGoogle ScholarPubMed
Reponen, T., Lockey, J., Bernstein, D. I., et al. (2012). Infant origins of childhood asthma associated with specific molds. The Journal of Allergy and Clinical Immunology, 130(3), 639644.CrossRefGoogle ScholarPubMed
Riedl, M., Diaz-Sanchez, D. (2005). Biology of diesel exhaust effects on respiratory function. The Journal of Allergy and Clinical Immunology, 115(2), 221228.CrossRefGoogle ScholarPubMed
Romieu, I., Meneses, F., Sienra-Monge, J. J. L., et al. (1995). Effects of urban air pollutants on emergency visits for childhood asthma in Mexico City. American Journal of Epidemiology, 141(6), 546553.CrossRefGoogle ScholarPubMed
Rossi, O. V. J., Kinnula, V. L., Tienari, J., Huhti, E. (1993). Association of severe asthma attacks with weather, pollen, and air pollutants. Thorax, 48(3), 244248.CrossRefGoogle ScholarPubMed
Schäppi, G. F., Taylor, P. E., Pain, M. C. F., et al. (1999). Concentrations of major grass group 5 allergens in pollen grains and atmospheric particles: implications for hay fever and allergic asthma sufferers sensitized to grass pollen allergens. Clinical and Experimental Allergy, 29(5), 633641.CrossRefGoogle ScholarPubMed
Schmier, J. K., Ebi, K. L. (2009). The impact of climate change and aeroallergens on children’s health. Allergy and Asthma Proceedings, 30(3), 229237.CrossRefGoogle ScholarPubMed
Sembajwe, G., Cifuentes, M., Tak, S. W., et al. (2010). National income, self-reported wheezing and asthma diagnosis from the World Health Survey. European Respiratory Journal, 35(2), 279286.CrossRefGoogle ScholarPubMed
Settele, J., Scholes, R., Betts, R. A., et al. (2014). Terrestrial and inland water systems. In: Field, C. B., Barros, V. R., Dokken, D. J., et al., eds. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY: Cambridge University Press, pp. 271359.Google Scholar
Shea, K. M., Truckner, R. T., Weber, R. W., Peden, D. B. (2008). Climate change and allergic disease. The Journal of Allergy and Clinical Immunology, 122(3), 443453.CrossRefGoogle ScholarPubMed
Shinn, E. A., Griffin, D. W., Seba, D. B. (2003). Atmospheric transport of mold spores in clouds of desert dust. Archives of Environmental Health, 58(8), 498504.Google ScholarPubMed
Sicherer, S. H., Sampson, H. A. (2010). Food allergy. The Journal of Allergy and Clinical Immunology, 125(2 Suppl 2), S116S125.CrossRefGoogle ScholarPubMed
Singer, B. D., Ziska, L. H., Frenz, D. A., Gebhard, D. E., Straka, J. G. (2005). Increasing Amb a 1 content in common ragweed (Ambrosia artemisiifolia) pollen as a function of rising atmospheric CO2 concentration. Functional Plant Biology, 32(7), 667670.CrossRefGoogle Scholar
Smith, K. R., Woodward, A., Campbell-Lendrum, D., et al. (2014). Human health: impacts, adaptation, and co-benefits. In: Field, C. B., Barros, V. R., Dokken, D. J., et al., eds. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY: Cambridge University Press, pp. 709754.Google Scholar
Storkey, J., Stratonovitch, P., Chapman, D. S., Vidotto, F., Semenov, M. A. (2014). A process-based approach to predicting the effect of climate change on the distribution of an invasive allergenic plant in Europe. PLoS One, 9(2), e88156.CrossRefGoogle ScholarPubMed
Szeinbach, S. L., Seoane-Vazquez, E. C., Beyer, A., Williams, P. B. (2007). The impact of allergic rhinitis on work productivity. Primary Care Respiratory Journal, 16(2), 98105. (See correction in: Szeinbach, S. L. (2007). Correction. Primary Care Respiratory Journal, 16(4), 257.)CrossRefGoogle ScholarPubMed
Takaro, T. K., Knowlton, K., Balmes, J. R. (2013). Climate change and respiratory health: current evidence and knowledge gaps. Expert Review of Respiratory Medicine, 7(4), 349361.CrossRefGoogle ScholarPubMed
Targonski, P. V., Persky, V. W., Ramekrishnan, V. (1995). Effect of environmental molds on risk of death from asthma during the pollen season. The Journal of Allergy and Clinical Immunology, 95(5 Pt 1), 955961.CrossRefGoogle ScholarPubMed
Taylor, P. E., Jonsson, H. (2004). Thunderstorm asthma. Current Allergy and Asthma Reports, 4(5), 409413.CrossRefGoogle ScholarPubMed
Tham, R., Dharmage, S. C., Taylor, P. E., et al. (2014). Outdoor fungi and child asthma health service attendances. Pediatric Allergy and Immunology, 25(5), 439449.CrossRefGoogle ScholarPubMed
Tobías, A., Galán, I., Banegas, J. R. (2004). Non-linear short-term effects of airborne pollen levels with allergenic capacity on asthma emergency room admissions in Madrid, Spain. Clinical and Experimental Allergy, 34(6), 871878.CrossRefGoogle ScholarPubMed
Traidl-Hoffmann, C., Kasche, A., Menzel, A., et al. (2003). Impact of pollen on human health: more than allergen carriers? International Archives of Allergy and Immunology, 131(1), 113.CrossRefGoogle ScholarPubMed
Vereda, A., van Hage, M., Ahlstedt, S., et al. (2011). Peanut allergy: clinical and immunologic differences among patients from 3 different geographic regions. The Journal of Allergy and Clinical Immunology, 127(3), 603607.CrossRefGoogle ScholarPubMed
Villeneuve, P. J., Chen, L., Rowe, B. H., Coates, F. (2007). Outdoor air pollution and emergency department visits for asthma among children and adults: a case-crossover study in northern Alberta, Canada. Environmental Health, 6, 40.CrossRefGoogle ScholarPubMed
Weber, R. W. (2012). Impact of climate change on aeroallergens. Annals of Allergy, Asthma & Immunology, 108(5), 294299.CrossRefGoogle ScholarPubMed
White, M. C., Etzel, R. A., Wilcox, W. D., Lloyd, C. (1994). Exacerbations of childhood asthma and ozone pollution in Atlanta. Environmental Research, 65(1), 5668.CrossRefGoogle ScholarPubMed
Wolf, J., O’Neill, N. R., Rogers, C. A., Muilenberg, M. L., Ziska, L. H. (2010). Elevated atmospheric carbon dioxide concentrations amplify Alternaria alternata sporulation and total antigen production. Environmental Health Perspectives, 118(9), 12231228.CrossRefGoogle ScholarPubMed
World Allergy Organization (2011). WAO White Book on Allergy. Milwaukee: World Allergy Organization.Google Scholar
Wu, P.-C., Tsai, J.-C., Li, F.-C., Lung, S.-C., Su, H.-J. (2004). Increased levels of ambient fungal spores in Taiwan are associated with dust events from China. Atmospheric Environment, 38(29), 48794886.CrossRefGoogle Scholar
Zhong, W., Levin, L., Reponen, T., et al. (2006). Analysis of short-term influences of ambient aeroallergens on pediatric asthma hospital visits. Science of the Total Environment, 370(2–3), 330336.CrossRefGoogle ScholarPubMed
Ziska, L. H., Caulfield, F. A. (2000). Rising CO2 and pollen production of common ragweed (Ambrosia artemisiifolia), a known allergy-inducing species: implications for public health. Australian Journal of Plant Physiology, 27(10), 893898.Google Scholar
Ziska, L., Knowlton, K., Rogers, C., et al. (2011). Recent warming by latitude associated with increased length of ragweed pollen season in central North America. Proceedings of the National Academy of Sciences of the United States of America, 108(10), 42484251.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×