Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-25T00:13:24.928Z Has data issue: false hasContentIssue false

22 - Alternative Treatments for Obsessive-Compulsive Disorder: Nutraceuticals and Lifestyle Interventions

from Section 2 - Practical Aspects of Obsessive-Compulsive Disorder

Published online by Cambridge University Press:  14 December 2018

Leonardo F. Fontenelle
Affiliation:
Federal University of Rio de Janeiro
Murat Yücel
Affiliation:
Monash University, Victoria
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sarris, J, Logan, AC, Akbaraly, TN, et al. Nutritional medicine as mainstream in psychiatry. Lancet Psychiatry. 2015;2(3):271274.Google Scholar
Sarris, J, Murphy, J, Mischoulon, D, Fava, M, Berk, M, Ng, C. Adjunctive nutrient nutraceuticals for depression: a systematic review and meta-analyses. Am J Psychiatry. 2016;173(6):575587.CrossRefGoogle ScholarPubMed
Figee, M, Pattij, T, Willuhn, I, et al. Compulsivity in obsessive-compulsive disorder and addictions. Eur Neuropsychopharmacol. 2016;26(5):856868.Google Scholar
Rector, NA, Richter, MA, Lerman, B, Regev, R. A pilot test of the additive benefits of physical exercise to CBT for OCD. Cogn Behav Ther. 2015;44(4):328340.Google Scholar
Gille, D, Schmid, A. Vitamin B12 in meat and dairy products. Nutr Rev. 2015;73(2):106115.Google Scholar
Gueant, JL, Caillerez-Fofou, M, Battaglia-Hsu, S, et al. Molecular and cellular effects of vitamin B12 in brain, myocardium and liver through its role as co-factor of methionine synthase. Biochimie. 2013;95(5):10331040.Google Scholar
Hannibal, L, Lysne, V, Bjorke-Monsen, AL, et al. Biomarkers and algorithms for the diagnosis of vitamin B12 deficiency. Front Mol Biosci. 2016;3:27.Google Scholar
Pauls, DL, Abramovitch, A, Rauch, SL, Geller, DA. Obsessive-compulsive disorder: an integrative genetic and neurobiological perspective. Nat Rev Neurosci. 2014;15(6):410424.Google Scholar
Marazziti, D. Understanding the role of serotonin in psychiatric diseases. F1000Res. 2017;6:180.CrossRefGoogle ScholarPubMed
Zhang, Y, Hodgson, NW, Trivedi, MS, et al. Decreased brain levels of vitamin B12 in aging, autism and schizophrenia. PloS One. 2016;11(1):e0146797.Google Scholar
Berk, M, Ng, F, Dean, O, Dodd, S, Bush, AI. Glutathione: a novel treatment target in psychiatry. Trends Pharmacol Sci. 2008;29(7):346351.Google Scholar
Brennan, B, Jensen, JE, Perriello, C, et al. Lower posterior cingulate cortex glutathione levels in obsessive-compulsive disorder. Neuropsychopharmacology. 2015;40:S119S120.Google Scholar
Kar, S, Choudhury, I. An empirical review on oxidative stress markers and their relevance in obsessive-compulsive disorder. Int J Nutr Pharmacol Neurol Dis. 2016;6(4):139145.Google Scholar
Sharma, V, Biswas, D. Cobalamin deficiency presenting as obsessive compulsive disorder: case report. Gen Hosp Psychiatry. 2012;34(5):578 e7–e8.Google Scholar
Valizadeh, M, Valizadeh, N. Obsessive compulsive disorder as early manifestation of B12 deficiency. Indian J Psychol Med. 2011;33(2):203204.CrossRefGoogle ScholarPubMed
Hermesh, H, Weizman, A, Shahar, A, Munitz, H. Vitamin B12 and folic acid serum levels in obsessive compulsive disorder. Acta Psychiatr Scand. 1988;78(1):810.Google Scholar
Turksoy, N, Bilici, R, Yalciner, A, et al. Vitamin B12, folate, and homocysteine levels in patients with obsessive-compulsive disorder. Neuropsychiatr Dis Treat. 2014;10:16711675.Google Scholar
Atmaca, M, Tezcan, E, Kuloglu, M, Kirtas, O, Ustundag, B. Serum folate and homocysteine levels in patients with obsessive-compulsive disorder. Psychiatry Clin Neurosci. 2005;59(5):616620.Google Scholar
Gropper, SA, Smith, JA. Advanced Nutrition and Human Metabolism, 6th ed. Belmont, CA: Wadsworth Cengage Learning; 2013.Google Scholar
Szewczyk, B, Kubera, M, Nowak, G. The role of zinc in neurodegenerative inflammatory pathways in depression. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(3):693701.Google Scholar
Bancila, V, Nikonenko, I, Dunant, Y, Bloc, A. Zinc inhibits glutamate release via activation of pre-synaptic K channels and reduces ischaemic damage in rat hippocampus. J Neurochem. 2004;90(5):12431250.Google Scholar
Peters, S, Koh, J, Choi, DW. Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons. Science. 1987;236(4801):589593.Google Scholar
Takeda, A, Hirate, M, Tamano, H, Oku, N. Release of glutamate and GABA in the hippocampus under zinc deficiency. J Neurosci Res. 2003;72(4):537542.Google Scholar
Bagchi, D, Vuchetich, PJ, Bagchi, M, et al. Protective effects of zinc salts on TPA-induced hepatic and brain lipid peroxidation, glutathione depletion, DNA damage and peritoneal macrophage activation in mice. Gen Pharmacol. 1998;30(1):4350.Google Scholar
Shohag, H, Ullah, A, Qusar, S, Rahman, M, Hasnat, A. Alterations of serum zinc, copper, manganese, iron, calcium, and magnesium concentrations and the complexity of interelement relations in patients with obsessive-compulsive disorder. Biol Trace Elem Res. 2012;148(3):275280.Google Scholar
Sayyah, M, Olapour, A, Saeedabad, Y, Yazdan Parast, R, Malayeri, A. Evaluation of oral zinc sulfate effect on obsessive-compulsive disorder: a randomized placebo-controlled clinical trial. Nutrition. 2012;28(9):892895.Google Scholar
Miao, D, Young, SL, Golden, CD. A meta-analysis of pica and micronutrient status. Am J Hum Biol. 2015;27(1):8493.Google Scholar
Deepmala, Slattery J, Kumar, N, et al. Clinical trials of N-acetylcysteine in psychiatry and neurology: a systematic review. Neurosci Biobehav Rev. 2015;55:294321.Google Scholar
Prescott, LF, Park, J, Ballantyne, A, Adriaenssens, P, Proudfoot, AT. Treatment of paracetamol (acetaminophen) poisoning with N-acetylcysteine. Lancet. 1977;2(8035):432434.Google Scholar
Lavoie, S, Murray, MM, Deppen, P, et al. Glutathione precursor, N-acetyl-cysteine, improves mismatch negativity in schizophrenia patients. Neuropsychopharmacology. 2008;33(9):21872199.CrossRefGoogle ScholarPubMed
Dean, OM, van den Buuse, M, Berk, M, Copolov, DL, Mavros, C, Bush, AI. N-acetyl cysteine restores brain glutathione loss in combined 2-cyclohexene-1-one and d-amphetamine-treated rats: relevance to schizophrenia and bipolar disorder. Neurosci Lett. 2011;499(3):149153.Google Scholar
Das, P, Tanious, M, Fritz, K, et al. Metabolite profiles in the anterior cingulate cortex of depressed patients differentiate those taking N-acetyl-cysteine versus placebo. Aust N Z J Psychiatry. 2013;47(4):347354.Google Scholar
Grados, MA, Atkins, EB, Kovacikova, GI, McVicar, E. A selective review of glutamate pharmacological therapy in obsessive-compulsive and related disorders. Psychol Res Behav Manag. 2015;8:115131.Google Scholar
Baker, DA, McFarland, K, Lake, RW, Shen, H, Toda, S, Kalivas, PW. N-acetyl cysteine-induced blockade of cocaine-induced reinstatement. Ann N Y Acad Sci. 2003;1003:349351.Google Scholar
Madayag, A, Lobner, D, Kau, KS, et al. Repeated N-acetylcysteine administration alters plasticity-dependent effects of cocaine. J Neurosci. 2007;27(51):1396813976.Google Scholar
Reissner, KJ, Gipson, CD, Tran, PK, Knackstedt, LA, Scofield, MD, Kalivas, PW. Glutamate transporter GLT-1 mediates N-acetylcysteine inhibition of cocaine reinstatement. Addict Biol. 2015;20(2):316323.Google Scholar
Hurley, MM, Resch, JM, Maunze, B, Frenkel, MM, Baker, DA, Choi, S. N-acetylcysteine decreases binge eating in a rodent model. Int J Obes (Lond). 2016;40(7):11831186.CrossRefGoogle Scholar
Kupchik, YM, Moussawi, K, Tang, XC, et al. The effect of N-acetylcysteine in the nucleus accumbens on neurotransmission and relapse to cocaine. Biol Psychiatry. 2012;71(11):978986.Google Scholar
Samuni, Y, Goldstein, S, Dean, OM, Berk, M. The chemistry and biological activities of N-acetylcysteine. Biochim Biophys Acta. 2013;1830(8):41174129.Google Scholar
Lafleur, DL, Pittenger, C, Kelmendi, B, et al. N-acetylcysteine augmentation in serotonin reuptake inhibitor refractory obsessive-compulsive disorder. Psychopharmacology (Berl). 2006;184(2):254256.Google Scholar
Rodrigues-Barata, AR, Tosti, A, Rodriguez-Pichardo, A, Camacho-Martinez, F. N-acetylcysteine in the treatment of trichotillomania. Int J Trichol. 2012;4(3):176178.Google Scholar
Ozcan, D, Seckin, D. N-acetylcysteine in the treatment of trichotillomania: remarkable results in two patients. J Eur Acad Dermatol Venereol. 2016;30(9):16061608.Google Scholar
Yazici, KU, Percinel, I. N-acetylcysteine augmentation in children and adolescents diagnosed with treatment-resistant obsessive-compulsive disorder case series. J Clin Psychopharm. 2015;35(4):486489.Google Scholar
Paydary, K, Akamaloo, A, Ahmadipour, A, Pishgar, F, Emamzadehfard, S, Akhondzadeh, S. N-acetylcysteine augmentation therapy for moderate-to-severe obsessive-compulsive disorder: randomized, double-blind, placebo-controlled trial. J Clin Pharm Ther. 2016;41(2):214219.CrossRefGoogle ScholarPubMed
Sarris, J, Oliver, G, Camfield, DA, et al. N-acetyl cysteine (nac) in the treatment of obsessive-compulsive disorder: a 16-week, double-blind, randomised, placebo-controlled study. CNS Drugs. 2015;29(9):801809.Google Scholar
Costa, DLC, Diniz, JB, Joaquim, M, et al. Poster sessions: P.4.d.006 Serotonin reuptake inhibitor augmentation with n-acetylcysteine in treatment resistant OCD: a double-blind randomized controlled trial. Eur Neuropsychopharmacol. 2015;25(Suppl 2):S570.Google Scholar
Afshar, H, Roohafza, H, Mohammad-Beigi, H, et al. N-acetylcysteine add-on treatment in refractory obsessive-compulsive disorder: a randomized, double-blind, placebo-controlled trial. J Clin Psychopharmacol. 2012;32(6):797803.Google Scholar
Grant, JE, Odlaug, BL, Kim, SW. N-acetylcysteine, a glutamate modulator, in the treatment of trichotillomania: a double-blind, placebo-controlled study. Arch Gen Psychiatry. 2009;66(7):756763.Google Scholar
Bloch, MH, Panza, KE, Grant, JE, Pittenger, C, Leckman, JF. N-Acetylcysteine in the treatment of pediatric trichotillomania: a randomized, double-blind, placebo-controlled add-on trial. J Am Acad Child Adolesc Psychiatry. 2013;52(3):231240.Google Scholar
Ghanizadeh, A, Derakhshan, N, Berk, M. N-acetylcysteine versus placebo for treating nail biting, a double blind randomized placebo controlled clinical trial. Antiinflamm Antiallergy Agents Med Chem. 2013;12(3):223228.Google Scholar
Miller, JL, Angulo, M. An open-label pilot study of N-acetylcysteine for skin-picking in Prader-Willi syndrome. Am J Med Genet A. 2014;164A(2):421424.Google Scholar
Grant, JE, Chamberlain, SR, Redden, SA, Leppink, EW, Odlaug, BL, Kim, SW. N-acetylcysteine in the treatment of excoriation disorder: a randomized clinical trial. JAMA Psychiatry. 2016;73(5):490496.Google Scholar
Grant, JE, Kim, SW, Odlaug, BL. N-acetyl cysteine, a glutamate-modulating agent, in the treatment of pathological gambling: a pilot study. Biol Psychiatry. 2007;62(6):652657.CrossRefGoogle ScholarPubMed
Grant, JE, Odlaug, BL, Chamberlain, SR, et al. A randomized, placebo-controlled trial of N-acetylcysteine plus imaginal desensitization for nicotine-dependent pathological gamblers. J Clin Psychiatry. 2014;75(1):3945.Google Scholar
Sarris, J, Oliver, G, Camfield, DA, Dean, OM. Participant characteristics as modifiers of response to N-acetyl cysteine (NAC) in obsessive-compulsive disorder. Clin Psychol Sci. 2016;4(6):11041111.Google Scholar
Back, SE, McCauley, JL, Korte, KJ, et al. A double-blind randomized controlled pilot trial of N-acetylcysteine in veterans with PTSD and substance use disorders. J Clin Psychiatry. 2016 Nov;77(11):e1439.Google Scholar
LaRowe, SD, Kalivas, PW, Nicholas, JS, Randall, PK, Mardikian, PN, Malcolm, RJ. A double-blind placebo-controlled trial of N-acetylcysteine in the treatment of cocaine dependence. Am J Addict. 2013;22(5):443452.Google Scholar
Kalivas, BC, Kalivas, PW. Corticostriatal circuitry in regulating diseases characterized by intrusive thinking. Dialogues Clin Neuro. 2016;18(1):6576.Google Scholar
Kim, H, McGrath, BM, Silverstone, PH. A review of the possible relevance of inositol and the phosphatidylinositol second messenger system (PI-cycle) to psychiatric disorders--focus on magnetic resonance spectroscopy (MRS) studies. Hum Psychopharmacol. 2005;20(5):309326.Google Scholar
Harvey, BH, Brink, CB, Seedat, S, Stein, DJ. Defining the neuromolecular action of myo-inositol: application to obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26(1):2132.Google Scholar
Marazziti, D, Masala, I, Rossi, A, et al. Increased inhibitory activity of protein kinase C on the serotonin transporter in OCD. Neuropsychobiology. 2000;41(4):171177.Google Scholar
Harvey, BH, Brink, CB, Seedat, S, Stein, DJ. Defining the neuromolecular action of myo-inositol: application to obsessive-compulsive disorder. Prog Neuro Psychopharmacol Biol Psychiatry. 2002;26(1):2132.CrossRefGoogle ScholarPubMed
Vulink, NC, Planting, RS, Figee, M, Booij, J, Denys, D. Reduced striatal dopamine D2/3 receptor availability in body dysmorphic disorder. Eur Neuropsychopharmacol. 2016;26(2):350356.Google Scholar
Mukai, T, Kishi, T, Matsuda, Y, Iwata, N. A meta-analysis of inositol for depression and anxiety disorders. Hum Psychopharmacol. 2014;29(1):5563.Google Scholar
Fux, M, Levine, J, Aviv, A, Belmaker, RH. Inositol treatment of obsessive-compulsive disorder. Am J Psychiatry. 1996;153(9):12191221.Google Scholar
Carey, PD, Warwick, J, Harvey, BH, Stein, DJ, Seedat, S. Single photon emission computed tomography (SPECT) in obsessive-compulsive disorder before and after treatment with inositol. Metab Brain Dis. 2004;19(1–2):125134.Google Scholar
Fux, M, Benjamin, J, Belmaker, RH. Inositol versus placebo augmentation of serotonin reuptake inhibitors in the treatment of obsessive-compulsive disorder: a double-blind cross-over study. Int J Neuropsychopharmacol. 1999;2(3):193195.Google Scholar
Seedat, S, Stein, DJ. Inositol augmentation of serotonin reuptake inhibitors in treatment-refractory obsessive-compulsive disorder: an open trial. Int Clin Psychopharmacol. 1999;14(6):353356.Google Scholar
Leppink, EW, Redden, SA, Grant, JE. A double-blind, placebo-controlled study of inositol in trichotillomania. Int Clin Psychopharmacol. 2017;32(2):107114.Google Scholar
Seedat, S, Stein, DJ, Harvey, BH. Inositol in the treatment of trichotillomania and compulsive skin picking. J Clin Psychiatry. 2001;62(1):6061.Google Scholar
Cioffi, CL, Guzzo, PR. Inhibitors of glycine transporter-1: potential therapeutics for the treatment of CNS disorders. Curr Top Med Chem. 2016;16(29):34043437.Google Scholar
Cleveland, WL, DeLaPaz, RL, Fawwaz, RA, Challop, RS. High-dose glycine treatment of refractory obsessive-compulsive disorder and body dysmorphic disorder in a 5-year period. Neural Plast. 2009;2009:768398.Google Scholar
Greenberg, WM, Benedict, MM, Doerfer, J, et al. Adjunctive glycine in the treatment of obsessive-compulsive disorder in adults. J Psychiatr Res. 2009;43(6):664670.Google Scholar
Lane, HY, Liu, YC, Huang, CL, et al. Sarcosine (N-methylglycine) treatment for acute schizophrenia: a randomized, double-blind study. Biol Psychiatry. 2008;63(1):912.Google Scholar
Tsai, G, Lane, HY, Yang, P, Chong, MY, Lange, N. Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry. 2004;55(5):452456.Google Scholar
Wu, PL, Tang, HS, Lane, HY, Tsai, CA, Tsai, GE. Sarcosine therapy for obsessive compulsive disorder a prospective, open-label study. J Clin Psychopharm. 2011;31(3):369374.Google Scholar
Sarris, J, Panossian, A, Schweitzer, I, Stough, C, Scholey, A. Herbal medicine for depression, anxiety and insomnia: a review of psychopharmacology and clinical evidence. Eur Neuropsychopharmacol. 2011;21(12):841860.Google Scholar
Newmaster, SG, Grguric, M, Shanmughanandhan, D, Ramalingam, S, Ragupathy, S. DNA barcoding detects contamination and substitution in North American herbal products. BMC Med. 2013;11:222.Google Scholar
Kulkarni, SK, Dhir, A. Withania somnifera: an Indian ginseng. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(5):10931105.Google Scholar
Dar, NJ, Bhat, JA, Satti, NK, Sharma, PR, Hamid, A, Ahmad, M. Withanone, an active constituent from Withania somnifera, affords protection against NMDA-induced excitotoxicity in neuron-like cells. Mol Neurobiol. 2017; 54(7):5061–5073.Google Scholar
Kumar, G, Patnaik, R. Exploring neuroprotective potential of Withania somnifera phytochemicals by inhibition of GluN2B-containing NMDA receptors: an in silico study. Med Hypotheses. 2016;92:3543.Google Scholar
Rajasankar, S, Manivasagam, T, Surendran, S. Ashwagandha leaf extract: a potential agent in treating oxidative damage and physiological abnormalities seen in a mouse model of Parkinson’s disease. Neurosci Lett. 2009;454(1):1115.Google Scholar
Bansal, P, Banerjee, S. Effect of Withania somnifera and shilajit on alcohol addiction in mice. Pharmacogn Mag. 2016;12(46):S121S128.Google Scholar
Candelario, M, Cuellar, E, Reyes-Ruiz, JM, et al. Direct evidence for GABAergic activity of Withania somnifera on mammalian ionotropic GABA(A) and GABAp receptors. J Ethnopharmacol. 2015;171:264272.Google Scholar
Bhatnagar, M, Sharma, D, Salvi, M. Neuroprotective effects of Withania somnifera dunal.: a possible mechanism. Neurochem Res. 2009;34(11):19751983.Google Scholar
Kulkarni, SK, Ninan, I. Inhibition of morphine tolerance and dependence by Withania somnifera in mice. J Ethnopharmacol. 1997;57(3):213217.Google Scholar
Peana, AT, Muggironi, G, Spina, L, et al. Effects of Withania somnifera on oral ethanol self- administration in rats. Behav Pharmacol. 2014;25(7):618628.Google Scholar
Kaurav, BP, Wanjari, MM, Chandekar, A, Chauhan, NS, Upmanyu, N. Influence of Withania somnifera on obsessive compulsive disorder in mice. Asian Pac J Trop Med. 2012;5(5):380384.Google Scholar
Attari, M, Jamaloo, F, Shadvar, S, Fakhraei, N, Dehpour, AR. Effect of Withania somnifera dunal root extract on behavioral despair model in mice: a possible role for nitric oxide. Acta Med Iran. 2016;54(3):165172.Google Scholar
Jahanbakhsh, SP, Manteghi, AA, Emami, SA, et al. Evaluation of the efficacy of Withania somnifera (ashwagandha) root extract in patients with obsessive-compulsive disorder: a randomized double-blind placebo-controlled trial. Complement Ther Med. 2016;27:2529.Google Scholar
Sayyah, M, Boostani, H, Pakseresht, S, Malayeri, A. Comparison of Silybum marianum (L.) Gaertn. with fluoxetine in the treatment of obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(2):362365.Google Scholar
Taylor, LH, Kobak, KA. An open-label trial of St. John’s Wort (Hypericum perforatum) in obsessive-compulsive disorder. J Clin Psychiatry. 2000;61(8):575578.Google Scholar
Kobak, KA, Taylor, LV, Bystritsky, A, et al. St John’s wort versus placebo in obsessive-compulsive disorder: results from a double-blind study. Int Clin Psychopharmacol. 2005;20(6):299304.Google Scholar
Csupor, D, Csorba, A, Hohmann, J. Recent advances in the analysis of flavonolignans of Silybum marianum. J Pharm Biomed Anal. 2016;130:301317.Google Scholar
Hirayama, K, Oshima, H, Yamashita, A, Sakatani, K, Yoshino, A, Katayama, Y. Neuroprotective effects of silymarin on ischemia-induced delayed neuronal cell death in rat hippocampus. Brain Res. 2016;1646:297303.Google Scholar
Shanmugam, K, Holmquist, L, Steele, M, et al. Plant-derived polyphenols attenuate lipopolysaccharide-induced nitric oxide and tumour necrosis factor production in murine microglia and macrophages. Mol Nutr Food Res. 2008;52(4):427438.Google Scholar
Valenzuela, A, Aspillaga, M, Vial, S, Guerra, R. Selectivity of silymarin on the increase of the glutathione content in different tissues of the rat. Planta Med. 1989;55(5):420422.Google Scholar
Nencini, C, Giorgi, G, Micheli, L. Protective effect of silymarin on oxidative stress in rat brain. Phytomedicine. 2007;14(2–3):129135.Google Scholar
Osuchowski, MF, Johnson, VJ, He, QR, Sharma, RP. Alterations in regional brain neurotransmitters by silymarin, a natural antioxidant flavonoid mixture, in BALB/c mice. Pharm Biol. 2004;42(4–5):384389.Google Scholar
Lu, P, Mamiya, T, Lu, L, et al. Silibinin attenuates cognitive deficits and decreases of dopamine and serotonin induced by repeated methamphetamine treatment. Behav Brain Res. 2010;207(2):387393.Google Scholar
Solati, J, Yaghmaei, P, Mohammdadi, K. Role of the 5-HT1A serotonergic system in anxiolytic-like effects of silymarin. Neurophysiology+. 2012;44(1):4955.Google Scholar
Thakare, VN, Dhakane, VD, Patel, BM. Potential antidepressant-like activity of silymarin in the acute restraint stress in mice: modulation of corticosterone and oxidative stress response in cerebral cortex and hippocampus. Pharmacol Rep. 2016;68(5):10201027.Google Scholar
Grant, JE, Odlaug, BL. Silymarin treatment of obsessive-compulsive spectrum disorders. J Clin Psychopharm. 2015;35(3):340342.Google Scholar
Jeschke, E, Ostermann, T, Vollmar, HC, Tabali, M, Matthes, H. Depression, comorbidities, and prescriptions of antidepressants in a German network of GPs and specialists with subspecialisation in anthroposophic medicine: a longitudinal observational study. Evid Based Complement Alternat Med. 2012;2012:508623.Google Scholar
Klemow, KM, Bartlow, A, Crawford, J, Kocher, N, Shah, J, Ritsick, M. Medical attributes of St. John’s wort (Hypericum perforatum). In: Benzie, IFF, Wachtel-Galor, S, eds. Herbal Medicine: Biomolecular and Clinical Aspects, 2nd ed. Boca Raton: CRC Press/Taylor and Francis; 2011.Google Scholar
Linde, K, Berner, MM, Kriston, L. St John’s wort for major depression. Cochrane Database Syst Rev. 2008(4):CD000448.Google Scholar
Kobak, KA, Taylor, LV, Warner, G, Futterer, R. St. John’s wort versus placebo in social phobia: results from a placebo-controlled pilot study. J Clin Psychopharmacol. 2005;25(1):5158.Google Scholar
Malhi, GS, Bassett, D, Boyce, P, et al. Royal Australian and New Zealand College of Psychiatrists clinical practice guidelines for mood disorders. Aust N Z J Psychiat. 2015;49(12):10871206.Google Scholar
Mead, GE, Morley, W, Campbell, P, Greig, CA, McMurdo, M, Lawlor, DA. Exercise for depression. Cochrane Database Syst Rev. 2009(3):CD004366.Google Scholar
Abrantes, AM, Strong, DR, Cohn, A, et al. Acute changes in obsessions and compulsions following moderate-intensity aerobic exercise among patients with obsessive-compulsive disorder. J Anxiety Disord. 2009;23(7):923927.Google Scholar
Brown, RA, Abrantes, AM, Strong, DR, et al. A pilot study of moderate-intensity aerobic exercise for obsessive compulsive disorder. J Nerv Ment Dis. 2007;195(6):514520.Google Scholar
Olatunji, BO, Davis, ML, Powers, MB, Smits, JA. Cognitive-behavioral therapy for obsessive-compulsive disorder: a meta-analysis of treatment outcome and moderators. J Psychiatr Res. 2013;47(1):3341.Google Scholar
Albert, U, Aguglia, A, Chiarle, A, Bogetto, F, Maina, G. Metabolic syndrome and obsessive-compulsive disorder: a naturalistic Italian study. Gen Hosp Psychiatry. 2013;35(2):154159.Google Scholar
Posadzki, P, Choi, J, Lee, MS, Ernst, E. Yoga for addictions: a systematic review of randomised clinical trials. Focus Alt Complement Ther. 2014;19(1):18.Google Scholar
Shannahoff-Khalsa, DS, Ray, LE, Levine, S, Gallen, CC, Schwartz, BJ, Sidorowich, JJ. Randomized controlled trial of yogic meditation techniques for patients with obsessive-compulsive disorder. CNS Spectrums. 1999;4(12):3447.Google Scholar
Bhat, S, Varambally, S, Karmani, S, Govindaraj, R, Gangadhar, BN. Designing and validation of a yoga-based intervention for obsessive compulsive disorder. Int Rev Psychiatry. 2016;28(3):327333.Google Scholar
Sarris, J, Kavanagh, DJ, Byrne, G. Adjuvant use of nutritional and herbal medicines with antidepressants, mood stabilizers and benzodiazepines. J Psychiatr Res. 2010;44(1): 3241.Google Scholar
Gray, SM, Bloch, MH. Systematic review of proinflammatory cytokines in obsessive-compulsive disorder. Curr Psychiatry Rep. 2012;14(3):220228.Google Scholar
Rao, NP, Venkatasubramanian, G, Ravi, V, Kalmady, S, Cherian, A, Yc, JR. Plasma cytokine abnormalities in drug-naive, comorbidity-free obsessive-compulsive disorder. Psychiatry Res. 2015;229(3):949952.Google Scholar
Turna, J, Grosman Kaplan, K, Anglin, R, Van Ameringen, M.What’s Bugging the Gut in OCD?” A review of the gut microbiome in obsessive-compulsive disorder. Depress Anxiety. 2016;33(3):171178.Google Scholar
Kantak, PA, Bobrow, DN, Nyby, JG. Obsessive-compulsive-like behaviors in house mice are attenuated by a probiotic (Lactobacillus rhamnosus GG). Behav Pharmacol. 2014;25(1):7179.Google Scholar
Van Ameringen, M. Probiotic Treatment in Adult Obsessive-Compulsive Disorder. NCT02334644. ClinicalTrials.gov, 2017. Available from: https://clinicaltrials.gov/ct2/show/NCT02334644?term=probiotics&cond=%22Anxiety+Disorders%22&rank=7 (accessed July 19, 2018).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×