Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-18T11:09:44.047Z Has data issue: false hasContentIssue false

15 - Solar Wind Interaction and Atmospheric Escape

Published online by Cambridge University Press:  05 July 2017

Robert M. Haberle
Affiliation:
NASA Ames Research Center
R. Todd Clancy
Affiliation:
Space Science Institute, Boulder, Colorado
François Forget
Affiliation:
Laboratoire de Météorologie Dynamique, Paris
Michael D. Smith
Affiliation:
NASA-Goddard Space Flight Center
Richard W. Zurek
Affiliation:
NASA-Jet Propulsion Laboratory, California
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acuña, M., Connerney, J. E. P., Wasilewski, P. A., et al. (1998), Magnetic field and plasma observations at Mars: initial results of the Mars global surveyor mission, Science, 279(5357), 16761680.Google Scholar
Anderson, D. E. J., and Hord, C. W. (1971), Mariner 6 and 7 Ultraviolet Spectrometer experiment: analysis of hydrogen Lyman-alpha data, J. Geophys. Res., 76(2), 6666, doi:10.1029/JA076i028p06666.Google Scholar
Andersson, L., Ergun, R. E., and Stewart, A. I. F. (2010), The Combined Atmospheric Photochemistry and Ion Tracing code: reproducing the Viking Lander results and initial outflow results, Icarus, 206(1), 120129, doi:10.1016/j.icarus.2009.07.009.Google Scholar
André, M., and Yau, A. (1997), Theories and observations of ion energization and outflow in the high latitude magnetosphere, Space Sci. Rev., 80(1), 2748, doi:10.1023/A:1004921619885.Google Scholar
Ayres, T. R. (1997), Evolution of the solar ionizing flux, J. Geophys. Res., 102(E), 16411652, doi:10.1029/96JE03306.CrossRefGoogle Scholar
Baker, D. N., S. G. Kanekal, J. P. McCollough, et al. (2008), Adverse space weather at the solar cycle minimum, American Geophysical Union Meeting, Abstract No. SH31C-05.Google Scholar
Bame, S. J., Asbridge, J. R., Feldman, W. C., et al. (1980), Deceleration of the solar wind upstream from the earth’s bow shock and the origin of diffuse upstream ions, J. Geophys. Res., 85, 29812990, doi:10.1029/JA085iA06p02981.CrossRefGoogle Scholar
Barabash, S., and Lundin, R. (2006), ASPERA-3 on Mars Express, Icarus, 182(2), 301307, doi:10.1016/j.icarus.2006.02.015.CrossRefGoogle Scholar
Barabash, S., Fedorov, A., Lundin, R., and Sauvaud, J.-A. (2007), Martian atmospheric erosion rates, Science, 315(5811), 501503, doi:10.1126/science.1134358.Google Scholar
Bauske, R., Nagy, A. F., Gombosi, T. I., et al. (1998), A three-dimensional MHD study of solar wind mass loading processes at Venus: effects of photoionization, electron impact ionization, and charge exchange, J. Geophys. Res., 103(A), 2362523638, doi:10.1029/98JA01791.Google Scholar
Bertaux, J.-L., Leblanc, F., Witasse, O., et al. (2005), Discovery of an aurora on Mars, Nature, 435(7), 790794, doi:10.1038/nature03603.Google Scholar
Bertucci, C., Mazelle, C., Crider, D. H., et al. (2003), Magnetic field draping enhancement at the Martian magnetic pileup boundary from Mars Global Surveyor observations, Geophys. Res. Lett., 30(2), 1099, doi:10.1029/2002GL015713.Google Scholar
Bertucci, C., Duru, F., Edberg, N., et al. (2011), The induced magnetospheres of Mars, Venus, and Titan, Space Sci. Rev., 162(1), 113171, doi:10.1007/s11214-011-9845-1.Google Scholar
Brace, L. H., Theis, R. F., and Hoegy, W. R. (1982), Plasma clouds above the ionopause of Venus and their implications, Planetary and Space Science, 30, 2937, doi:10.1016/0032-0633(82)90069-1.Google Scholar
Brain, D. A. (2006), Mars Global Surveyor measurements of the Martian solar wind interaction, Space Sci. Rev., 126(1), 77112, doi:10.1007/s11214-006-9122-x.Google Scholar
Brain, D., and Halekas, J. S. (2012), Aurora in Martian mini magnetospheres, Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets, Geophysical Monograph Series, 197, 123132, doi:10.1029/2011GM001201.Google Scholar
Brain, D. A., and Jakosky, B. M. (1998), Atmospheric loss since the onset of the Martian geologic record: combined role of impact erosion and sputtering, J. Geophys. Res., 103(E), 2268922694, doi:10.1029/98JE02074.CrossRefGoogle Scholar
Brain, D. A., Bagenal, F., Acuña, M. H., et al. (2002), Observations of low-frequency electromagnetic plasma waves upstream from the Martian shock, J. Geophys. Res. – Space, 107(A), 1076, doi:10.1029/2000JA000416.Google Scholar
Brain, D. A., Bagenal, F., Acuña, M. H., and Connerney, J. E. P. (2003), Martian magnetic morphology: contributions from the solar wind and crust, J. Geophys. Res., 108(A), 1424, doi:10.1029/2002JA009482.CrossRefGoogle Scholar
Brain, D. A., Halekas, J. S., Lillis, R., et al. (2005), Variability of the altitude of the Martian sheath, Geophys. Res. Lett., 32(1), 18203, doi:10.1029/2005GL023126.Google Scholar
Brain, D. A., Halekas, J. S., Peticolas, L. M., et al. (2006), On the origin of aurorae on Mars, Geophys. Res. Lett., 33(1), 01201, doi:10.1029/2005GL024782.Google Scholar
Brain, D. A., Lillis, R. J., Mitchell, D. L., Halekas, J. S., and Lin, R. P. (2007), Electron pitch angle distributions as indicators of magnetic field topology near Mars, J. Geophys. Res., 112(A), 09201, doi:10.1029/2007JA012435.Google Scholar
Brain, D. A., Baker, A. H., Briggs, J., et al. (2010a), Episodic detachment of Martian crustal magnetic fields leading to bulk atmospheric plasma escape, Geophys. Res. Lett., 37(1), 14108, doi:10.1029/2010GL043916.Google Scholar
Brain, D., Barabash, S., Boesswetter, A., et al. (2010b), A comparison of global models for the solar wind interaction with Mars, Icarus, 206(1), 139151, doi:10.1016/j.icarus.2009.06.030.Google Scholar
Brain, D. A., McFadden, J. P., Halekas, J. S., et al. (2015), The spatial distribution of planetary ion fluxes near Mars observed by MAVEN, Geophys. Res. Lett., 42, 91429148, doi:10.1002/2015GL065293.Google Scholar
Brecht, S. H. (1990), Magnetic asymmetries of unmagnetized planets, Geophys. Res. Lett., 17(9), 12431246, doi:10.1029/GL017i009p01243.Google Scholar
Brecht, S. H., and Ledvina, S. A. (2006), The solar wind interaction with the Martian ionosphere/atmosphere, Space Sci. Rev., 126(1), 1538, doi:10.1007/s11214-006-9084-z.CrossRefGoogle Scholar
Brecht, S. H., and Ledvina, S. A. (2010), The loss of water from Mars: numerical results and challenges, Icarus, 206(1), 164173, doi:10.1016/j.icarus.2009.04.028.Google Scholar
Brecht, S. H., and Ledvina, S. A. (2012), Control of ion loss from Mars during solar minimum, Earth, Planets and Space, 64(2), 165178, doi:10.5047/eps.2011.05.037.CrossRefGoogle Scholar
Briggs, J., Brain, D. A., Cartwright, M. L., Eastwood, J. P., and Halekas, J. S. (2011), A statistical study of flux ropes in the Martian magnetosphere, Planetary and Space Science, 59(1), 14981505, doi:10.1016/j.pss.2011.06.010.Google Scholar
Cameron, A. G. W. (1983), Origin of the atmospheres of the terrestrial planets, Icarus, 56, 195201, doi:10.1016/0019-1035(83)90032-5.CrossRefGoogle Scholar
Carr, M. H., and Clow, G. D. (1981), Martian channels and valleys – their characteristics, distribution, and age, Icarus, 48, 91117, doi:10.1016/0019-1035(81)90156-1.Google Scholar
Chassefière, E., and Leblanc, F. (2004), Mars atmospheric escape and evolution; interaction with the solar wind, Planetary and Space Science, 52(1), 10391058, doi:10.1016/j.pss. 2004. 07.002.Google Scholar
Chaufray, J. Y., Modolo, R., Leblanc, F., et al. (2007), Mars solar wind interaction: formation of the Martian corona and atmospheric loss to space, J. Geophys. Res., 112(E9), doi:10.1029/2007JE002915.CrossRefGoogle Scholar
Chaufray, J. Y., Bertaux, J. L., Leblanc, F., and Quemerais, E. (2008), Observation of the hydrogen corona with SPICAM on Mars Express, Icarus, 195(2), 598613, doi:10.1016/j.icarus. 2008. 01.009.CrossRefGoogle Scholar
Cipriani, F., Leblanc, F., and Berthelier, J.-J. (2007), Martian corona: nonthermal sources of hot heavy species, J. Geophys. Res., 112(E), 07001, doi:10.1029/2006JE002818.CrossRefGoogle Scholar
Cloutier, P. A., Law, C. C., Crider, D. H., et al. (1999), Venus-like interaction of the solar wind with Mars, Geophys. Res. Lett., 26(1), 26852688, doi:10.1029/1999GL900591.Google Scholar
Craddock, R. A., and Howard, A. D. (2002), The case for rainfall on a warm, wet early Mars, J. Geophys. Res. – Planets, 107(E), 5111, doi:10.1029/2001JE001505.Google Scholar
Crider, D. H., Acuña, M. H., Connerney, J. E., et al. (2002), Observations of the latitude dependence of the location of the Martian magnetic pileup boundary, Geophys. Res. Lett., 29(8), 11–1, doi:10.1029/2001GL013860.Google Scholar
Crider, D. H., Brain, D. A., Acuña, M. H., et al. (2004), Mars Global Surveyor Observations of Solar Wind Magnetic Field Draping Around Mars, Space Sci. Rev., 111(1), 203221, doi:10.1023/B:SPAC.0000032714.66124.4e.Google Scholar
Crider, D. H., Espley, J., Brain, D. A., et al. (2005), Mars Global Surveyor observations of the Halloween 2003 solar superstorm’s encounter with Mars, J. Geophys. Res., 110(A), doi:10.1029/2004JA010881.Google Scholar
Curry, S. M., Liemohn, M., Fang, X., Brain, D., and Ma, Y. (2013), Simulated kinetic effects of the corona and solar cycle on high altitude ion transport at Mars, J. Geophys. Res. – Space, 118(6), 37003711, doi:10.1002/jgra.50358.Google Scholar
Curry, S. M., Luhmann, J. G., Ma, Y. J., et al. (2015), Response of Mars O+ pickup ions to the 8 March 2015 ICME: inferences from MAVEN data-based models, Geophys. Res. Lett., 42, 90959102, doi:10.1002/2015GL065304.CrossRefGoogle Scholar
Delva, M., Mazelle, C., and Bertucci, C. (2011), Upstream Ion Cyclotron Waves at Venus and Mars, Space Sci. Rev., 162(1), 524, doi:10.1007/s11214-011-9828-2.Google Scholar
Dieval, C., Kallio, E., Barabash, S., et al. (2012), A case study of proton precipitation at Mars: Mars Express observations and hybrid simulations, J. Geophys. Res., 117(A), 06222, doi:10.1029/2012JA017537.CrossRefGoogle Scholar
Dong, C., Bougher, S. W., Ma, Y., et al. (2014), Solar wind interaction with Mars upper atmosphere: results from the one-way coupling between the multifluid MHD model and the MTGCM model, Geophys. Res. Lett., 41(8), 27082715, doi:10.1002/2014GL059515.Google Scholar
Dong, C., Ma, Y., Bougher, S. W., et al. (2015a), Multifluid MHD study of the solar wind interaction with Mars’ upper atmosphere during the 2015 March 8th ICME event, Geophys. Res. Lett., 42, 91039112, doi:10.1002/2015GL065944.Google Scholar
Dong, Y., Fang, X., Brain, D. A., et al. (2015b), Strong plume fluxes at Mars observed by MAVEN: an important planetary ion escape channel, Geophys. Res. Lett., 42, 89428950, doi:10.1002/2015GL065346.Google Scholar
Dryer, M., and Heckman, G. R. (1967), On the hypersonic analogue as applied to planetary interaction with the solar plasma, Planet. Space Sci., 15, 515546.Google Scholar
Du, J., Zhang, T. L., Baumjohann, W., et al. (2010), Statistical study of low-frequency magnetic field fluctuations near Venus under the different interplanetary magnetic field orientations, J Geophys Res-Space, 115(A), 12251, doi:10.1029/2010JA015549.Google Scholar
Dubinin, E., Fraenz, M., Woch, J., et al. (2006a), Hydrogen exosphere at Mars: pickup protons and their acceleration at the bow shock, Geophys. Res. Lett., 33(2), 22103, doi:10.1029/2006GL027799.CrossRefGoogle Scholar
Dubinin, E., Fränz, M., Woch, J., et al. (2006b), Plasma Morphology at Mars. Aspera-3 Observations, Space Sci Rev, 126(1), 209238, doi:10.1007/s11214-006-9039-4.Google Scholar
Dubinin, E., Modolo, R., Fraenz, M., et al. (2008a), Plasma environment of Mars as observed by simultaneous MEX-ASPERA-3 and MEX-MARSIS observations, J. Geophys. Res., 113(A), 10217, doi:10.1029/2008JA013355.Google Scholar
Dubinin, E., Modolo, R., Fraenz, M., et al. (2008b), Structure and dynamics of the solar wind/ionosphere interface on Mars: MEX-ASPERA-3 and MEX-MARSIS observations, Geophys. Res. Lett., 35(1), 11103, doi:10.1029/2008GL033730.Google Scholar
Dubinin, E., Chanteur, G., Fraenz, M., and Woch, J. (2008c), Field-aligned currents and parallel electric field potential drops at Mars. Scaling from the Earth’ aurora, Planetary and Space Science, 56(6), 868872, doi:10.1016/j.pss.2007.01.019.Google Scholar
Dubinin, E., Chanteur, G., Fraenz, M., et al. (2008d), Asymmetry of plasma fluxes at Mars. ASPERA-3 observations and hybrid simulations, Planetary and Space Science, 56(6), 832835, doi:10.1016/j.pss.2007.12.006.Google Scholar
Dubinin, E., Fraenz, M., Woch, J., et al. (2009a), Ionospheric storms on Mars: impact of the corotating interaction region, Geophys. Res. Lett., 36(1), 01105, doi:10.1029/2008GL036559.CrossRefGoogle Scholar
Dubinin, E., Fraenz, M., Woch, J., Barabash, S., and Lundin, R. (2009b), Long-lived auroral structures and atmospheric losses through auroral flux tubes on Mars, Geophys. Res. Lett., 36(8), 08108, doi:10.1029/2009GL038209.Google Scholar
Dubinin, E., Fraenz, M., Fedorov, A., et al. (2011), Ion Energization and Escape on Mars and Venus, Space Sci. Rev., 162(1), 173211, doi:10.1007/s11214-011-9831-7.Google Scholar
Dubinin, E., Fraenz, M., Woch, J., et al. (2012), Upper ionosphere of Mars is not axially symmetrical, Earth, 64(2), 113120, doi:10.5047/eps.2011.05.022.Google Scholar
Dubinin, E., Fraenz, M., Woch, J., et al. (2013), Toroidal and poloidal magnetic fields at Venus. Venus Express observations, Planetary and Space Science, 87, 1929, doi:10.1016/j.pss.2012.12.003.CrossRefGoogle Scholar
Duru, F., Gurnett, D. A., Averkamp, T. F., et al. (2006), Magnetically controlled structures in the ionosphere of Mars, J. Geophys. Res., 111(A12), doi:10.1029/2006JA011975.Google Scholar
Duru, F., Gurnett, D. A., Frahm, R. A., et al. (2009), Steep, transient density gradients in the Martian ionosphere similar to the ionopause at Venus, J. Geophys. Res., 114(A), 12310, doi:10.1029/2009JA014711.Google Scholar
Duru, F., Morgan, D. D., and Gurnett, D. A. (2010), Overlapping ionospheric and surface echoes observed by the Mars Express radar sounder near the Martian terminator, Geophys. Res. Lett., 37(2), 23102, doi:10.1029/2010GL045859.Google Scholar
Eastwood, J. P., Sibeck, D. G., Angelopoulos, V. et al. (2008a), THEMIS observations of a hot flow anomaly: solar wind, magnetosheath, and ground-based measurements, Geophys. Res. Lett., 35(17), doi:10.1029/2008GL033475.Google Scholar
Eastwood, J. P., Brain, D. A., Halekas, J. S., et al. (2008b), Evidence for collisionless magnetic reconnection at Mars, Geophys. Res. Lett., 35(2), doi:10.1029/2007GL032289.Google Scholar
Edberg, N. J. T., Lester, M., Cowley, S. W. H., and Eriksson, A. I. (2008), Statistical analysis of the location of the Martian magnetic pileup boundary and bow shock and the influence of crustal magnetic fields, J. Geophys. Res., 113(A8), doi:10.1029/2008JA013096.Google Scholar
Edberg, N. J. T., Auster, U., Barabash, S., et al. (2009a), Rosetta and Mars Express observations of the influence of high solar wind pressure on the Martian plasma environment, Ann Geophys-Germany, 27(12), 45334545.Google Scholar
Edberg, N. J. T., Brain, D. A., Lester, M., et al. (2009b), Plasma boundary variability at Mars as observed by Mars Global Surveyor and Mars Express, Ann. Geophys., 27(9), 35373550, doi:10.5194/angeo-27-3537-2009.Google Scholar
Edberg, N. J. T., Nilsson, H., Williams, A. O., et al. (2010), Pumping out the atmosphere of Mars through solar wind pressure pulses, Geophys. Res. Lett., 37(3), 03107, doi:10.1029/2009GL041814.Google Scholar
Ergun, R. E., Andersson, L., Peterson, W. K., et al. (2006), Role of plasma waves in Mars’ atmospheric loss, Geophys. Res. Lett., 33(1), 14103, doi:10.1029/2006GL025785.Google Scholar
Espley, J. R. (2004), Observations of low-frequency magnetic oscillations in the Martian magnetosheath, magnetic pileup region, and tail, J. Geophys. Res., 109(A7), doi:10.1029/2003JA010193.Google Scholar
Espley, J. R. (2005), Low-frequency plasma oscillations at Mars during the October 2003 solar storm, J. Geophys. Res., 110(A9), doi:10.1029/2004JA010935.Google Scholar
Fang, X., Liemohn, M. W., Nagy, A. F., et al. (2008), Pickup oxygen ion velocity space and spatial distribution around Mars, J. Geophys. Res., 113(A), 02210, doi:10.1029/2007JA012736.Google Scholar
Fang, X., Liemohn, M. W., Nagy, A. F., Luhmann, J. G., and Ma, Y. (2010a), Escape probability of Martian atmospheric ions: controlling effects of the electromagnetic fields, J. Geophys. Res., 115(A), 04308, doi:10.1029/2009JA014929.Google Scholar
Fang, X., Liemohn, M. W., Nagy, A. F., Luhmann, J. G., and Ma, Y. (2010b), On the effect of the Martian crustal magnetic field on atmospheric erosion, Icarus, 206(1), 130138, doi:10.1016/j.icarus.2009.01.012.Google Scholar
Fedorov, A., Budnik, E., Sauvaud, J.-A., et al. (2006), Structure of the Martian wake, Icarus, 182(2), 329336, doi:10.1016/j.icarus.2005.09.021.Google Scholar
Fedorov, A., Ferrier, C., Sauvaud, J.-A., et al. (2008), Comparative analysis of Venus and Mars magnetotails, Planetary and Space Science, 56(6), 812817, doi:10.1016/j.pss.2007.12.012.Google Scholar
Feldman, P. D., Steffl, A. J., Parker, J. W., et al. (2011), Rosetta-Alice observations of exospheric hydrogen and oxygen on Mars, Icarus, 214(2), 394399, doi:10.1016/j.icarus.2011.06.013.CrossRefGoogle Scholar
Fillingim, M. O., Peticolas, L. M., Lillis, R. J., et al. (2010), Localized ionization patches in the nighttime ionosphere of Mars and their electrodynamic consequences, Icarus, 206(1), 112119, doi:10.1016/j.icarus.2009.03.005.Google Scholar
Fowler, C. M., Andersson, L., Ergun, R. E., et al. (2015), The first in situ electron temperature and density measurements of the Martian nightside ionosphere, Geophys. Res. Lett., 42, 88548861, doi:10.1002/2015GL065267.Google Scholar
Fox, J. (1993), On the escape of oxygen and hydrogen from Mars, Geophys. Res. Lett., 20(17), 17471750.Google Scholar
Fox, J. L., and Bakalian, F. M. (2001), Photochemical escape of atomic carbon from Mars, J. Geophys. Res., 106(A), 2878528796, doi:10.1029/2001JA000108.CrossRefGoogle Scholar
Fox, J. L., and Dalgarno, A. (1983), Nitrogen escape from Mars, Journal of Geophysical Research, 88, 90279032, doi:10.1029/JA088iA11p09027.Google Scholar
Fox, J. L., and Hać, A. B. (2009), Photochemical escape of oxygen from Mars: a comparison of the exobase approximation to a Monte Carlo method, Icarus, 204(2), 527544, doi:10.1016/j.icarus.2009.07.005.Google Scholar
Frahm, R. A., Sharber, J. R., Winningham, J. D., et al. (2007), Locations of atmospheric photoelectron energy peaks within the Mars environment, Space Sci. Rev., 126(1–4), 389402, doi:10.1007/s11214-006-9119-5.Google Scholar
Fränz, M., Dubinin, E., Roussos, E., et al. (2007), Plasma Moments in the Environment of Mars, Space Sci Rev, 126(1–4), 165207, doi:10.1007/s11214-006-9115-9.Google Scholar
Futaana, Y., Barabash, S., Grigoriev, A., et al. (2006), First ENA observations at Mars: ENA emissions from the Martian upper atmosphere, Icarus, 182(2), 424430, doi:10.1016/j.icarus.2005.09.019.Google Scholar
Futaana, Y., Barabash, S., Yamauchi, M., et al. (2008), Mars Express and Venus Express multi-point observations of geoeffective solar flare events in December 2006, Planetary and Space Science, 56(6), 873880, doi:10.1016/j.pss.2007.10.014.Google Scholar
Grard, R., Skalsky, A., Nairn, C., Trotignon, J. G., and Schwingenschuh, K. (1992), Waves and cold plasmas near Mars, Advances in Space Research, 12, 243249.Google Scholar
Gurnett, D. A., Morgan, D. D., Duru, F., et al. (2010), Large density fluctuations in the Martian ionosphere as observed by the Mars Express radar sounder, Icarus, 206(1), 8394, doi:10.1016/j.icarus.2009.02.019.Google Scholar
Haider, S. A., Mahajan, K. K., and Kallio, E. (2011), Mars ionosphere: a review of experimental results and modeling studies, Rev. Geophys., 49(4), 4001, doi:10.1029/2011RG000357.Google Scholar
Halekas, J. S., Brain, D. A., Lillis, R. J., et al. (2006), Current sheets at low altitudes in the Martian magnetotail, Geophys. Res. Lett., 33(1), 13101, doi:10.1029/2006GL026229.Google Scholar
Halekas, J. S., Brain, D. A., Lin, R. P., Luhmann, J. G., and Mitchell, D. L. (2008), Distribution and variability of accelerated electrons at Mars, Advances in Space Research, 41(9), 13471352, doi:10.1016/j.asr.2007.01.034.Google Scholar
Halekas, J. S., Eastwood, J. P., Brain, D. A., et al. (2009), In situ observations of reconnection Hall magnetic fields at Mars: evidence for ion diffusion region encounters, J. Geophys. Res., 114(A), 11204, doi:10.1029/2009JA014544.Google Scholar
Halekas, J. S., Brain, D. A., and Eastwood, J. P. (2011), Large-amplitude compressive “sawtooth” magnetic field oscillations in the Martian magnetosphere, J. Geophys. Res., 116(A), 07222, doi:10.1029/2011JA016590.Google Scholar
Halekas, J. S., et al. (2015), MAVEN observations of solar wind hydrogen deposition in the atmosphere of Mars, Geophys. Res. Lett., 42, 89018909, doi:10.1002/2015GL064693.Google Scholar
Harada, Y., Halekas, J. S., McFadden, J. P., et al. (2015a), Marsward and tailward ions in the near-Mars magnetotail: MAVEN observations, Geophys. Res. Lett., 42, 89258932, doi:10.1002/2015GL065005.Google Scholar
Harada, Y., Halekas, J. S., McFadden, J. P., et al. (2015b), Magnetic reconnection in the near-Mars magnetotail: MAVEN observations, Geophys. Res. Lett., 42, 88388845, doi:10.1002/2015GL065004.Google Scholar
Harnett, E. M., and Winglee, R. M. (2003), 2.5-D fluid simulations of the solar wind interacting with multiple dipoles on the surface of the Moon, J. Geophys. Res. – Space, 108(A), 1088, doi:10.1029/2002JA009617.Google Scholar
Harnett, E. M., and Winglee, R. M. (2006), Three-dimensional multifluid simulations of ionospheric loss at Mars from nominal solar wind conditions to magnetic cloud events, J. Geophys. Res., 111(A), 09213, doi:10.1029/2006JA011724.Google Scholar
Hasegawa, H., Fujimoto, M., Phan, T. D., et al. (2004), Transport of solar wind into Earth’s magnetosphere through rolled-up Kelvin–Helmholtz vortices, Nature, 430(7), 755758, doi:10.1038/nature02799.CrossRefGoogle ScholarPubMed
Hassler, D. M. et al. (2012), The Radiation Assessment Detector (RAD) investigation, Space Sci. Rev., 170(1), 503558, doi:10.1007/s11214-012-9913-1.Google Scholar
Hodges, R. R. (2002), The rate of loss of water from mars, Geophys. Res. Lett., 29(3), 1038, doi:10.1029/2001GL013853.Google Scholar
Hoke, M. R. T., and Hynek, B. M. (2009), Roaming zones of precipitation on ancient Mars as recorded in valley networks, J. Geophys. Res., 114(E), 08002, doi:10.1029/2008JE003247.Google Scholar
Hunten, D. M. (1982), Thermal and nonthermal escape mechanisms for terrestrial bodies, Planetary and Space Science, 30, 773783, doi:10.1016/0032-0633(82)90110-6.Google Scholar
Hunten, D. M. (1992), Evolution of the atmosphere of Venus and Mars, in Venus and Mars: Atmospheres, Ionosphers, and Solar Wind Interactions, Proceedings of the Chapman Conference, Balatonfured, Hungary, June 4–8, 1990 (A92-50426-21-91).Google Scholar
Hutchins, K. S., Jakosky, B. M., and Luhmann, J. G. (1997), Impact of a paleomagnetic field on sputtering loss of Martian atmospheric argon and neon, J. Geophys. Res., 102(E), 91839190, doi:10.1029/96JE03838.Google Scholar
Jakosky, B. M., and Jones, J. H. (1994), Evolution of water on Mars, Nature, 370(6), 328329, doi:10.1038/370328a0.Google Scholar
Jakosky, B. M., and Phillips, R. J. (2001), Mars’ volatile and climate history, Nature, 412(6), 237244.Google Scholar
Jakosky, B. M., Pepin, R. O., Johnson, R. E., and Fox, J. L. (1994), Mars atmospheric loss and isotopic fractionation by solar-wind-induced sputtering and photochemical escape, Icarus, 111, 271288, doi:10.1006/icar.1994.1145.Google Scholar
Jakosky, B. M., Grebowsky, J. M., Luhmann, J. M., et al. (2015a), The Mars Atmosphere and Volatile Evolution (MAVEN) mission, Space Sci Rev, 21, doi:10.1007/s11214-015-0139-x.Google Scholar
Jakosky, B. M., Grebowsy, J. M., Luhmann, J. G., and Brain, D. A. (2015b), Initial results from the MAVEN mission to Mars, Geophys. Res. Lett., 42, 87918802, doi:10.1002/2015GL065271.Google Scholar
Jakosky, B. M. et al. (2015c), MAVEN observations of the response of Mars to an interplanetary coronal mass ejection, Science, 350(6), 0210, doi:10.1126/science.aad0210.CrossRefGoogle Scholar
Johnson, R. E., and Luhmann, J. G. (1998), Sputter contribution to the atmospheric corona on Mars, J. Geophys. Res., 103, 3649, doi:10.1029/97JE03266.Google Scholar
Kallio, E., Koskinen, H., Barabash, S., Nairn, C. M. C., and Schwingenschuh, K. (1995), Oxygen outflow in the Martian magnetotail, Geophys. Res. Lett., 22(1), 24492452, doi:10.1029/95GL02474.Google Scholar
Kallio, E., Frahm, R. A., Futaana, Y., Fedorov, A., and Janhunen, P. (2008), Morphology of the magnetic field near Mars and the role of the magnetic crustal anomalies: dayside region, Planetary and Space Science, 56(6), 852855, doi:10.1016/j.pss.2007.12.002.Google Scholar
Kallio, E., Liu, K., Jarvinen, R., Pohjola, V., and Janhunen, P. (2010), Oxygen ion escape at Mars in a hybrid model: high energy and low energy ions, Icarus, 206(1), 152163, doi:10.1016/j.icarus.2009.05.015.Google Scholar
Kallio, E., Chaufray, J.-Y., Modolo, R., Snowden, D., and Winglee, R. (2011), Modeling of Venus, Mars, and Titan, Space Sci. Rev., 162(1), 267307, doi:10.1007/s11214-011-9814-8.Google Scholar
Khodachenko, M. L. et al. (2007), Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. I. CME impact on expected magnetospheres of Earth-like exoplanets in close-in habitable zones, Astrobiology, 7(1), 167184, doi:10.1089/ast.2006.0127.Google Scholar
Kim, J., Nagy, A. F., Fox, J. L., and Cravens, T. E. (1998), Solar cycle variability of hot oxygen atoms at Mars, J. Geophys. Res., 103(A), 2933929342, doi:10.1029/98JA02727.Google Scholar
Kotova, G. A., Verigin, M. I., Shutte, N. M., et al. (1997), Planetary heavy ions in the magnetotail of Mars – results of the TAUS and MAGMA experiments aboard PHOBOS, Advances in Space Research, 20, 173, doi:10.1016/S0273-1177(97)00529-2.Google Scholar
Krasnopolsky, V. A. (1993), Photochemistry of the Martian atmosphere (mean conditions), Icarus, 101, 313332, doi:10.1006/icar.1993.1027.CrossRefGoogle Scholar
Krasnopolsky, V. A., and Feldman, P. D. (2001), Detection of molecular hydrogen in the atmosphere of Mars, Science, 294(5), 19141917, doi:10.1126/science.1065569.Google Scholar
Krasnopolsky, V. A., Bjoraker, G. L., Mumma, M. J., and Jennings, D. E. (1997), High-resolution spectroscopy of Mars at 3.7 and 8 µm: a sensitive search of H2O2, H2CO, HCl, and CH4, and detection of HDO, J. Geophys. Res., 102(E), 65256534, doi:10.1029/96JE03766.Google Scholar
Krest’yanikova, M. A., and Shematovich, V. I. (2005), Stochastic models of hot planetary and satellite coronas: a photochemical source of hot oxygen in the upper atmosphere of Mars, Sol. Syst. Res., 39(1), 2232, doi:10.1007/s11208-005-0002-9.Google Scholar
Krymskii, A. M., Breus, T. K., Ness, N. F., et al. (2002), Structure of the magnetic field fluxes connected with crustal magnetization and topside ionosphere at Mars, J. Geophys. Res. – Space, 107(A), 1245, doi:10.1029/2001JA000239.Google Scholar
Lammer, H., and Bauer, S. J. (1991), Nonthermal atmospheric escape from Mars and Titan, Journal of Geophysical Research, 96, 18191825, doi:10.1029/90JA01676.Google Scholar
Lammer, H., Selsis, F., Ribas, I., et al. (2003), Atmospheric loss of exoplanets resulting from stellar X-ray and extreme-ultraviolet heating, Astrophysical Journal, 598(2), L121–L124, doi:10.1086/380815.Google Scholar
Lammer, H., Kasting, J. F., Chassefière, E., et al. (2008), Atmospheric escape and evolution of terrestrial planets and satellites, Space Sci. Rev., 139(1), 399436, doi:10.1007/s11214-008-9413-5.Google Scholar
Lammer, H., Kasting, J. F., Chassefière, E., et al. (2009), Atmospheric escape and evolution of terrestrial planets and satellites, Comparative Aeronomy, 2, 399, doi:10.1007/978-0-387-87825-6_11.Google Scholar
Leblanc, F., and Johnson, R. E. (2002), Role of molecular species in pickup ion sputtering of the Martian atmosphere, J. Geophys. Res. – Planet, 107(E), 5010, doi:10.1029/2000JE001473.Google Scholar
Leblanc, F., Luhmann, J. G., Johnson, R. E., and Chassefiere, E. (2002), Some expected impacts of a solar energetic particle event at Mars, J. Geophys. Res. – Space, 107(A), 1058, doi:10.1029/2001JA900178.Google Scholar
Leblanc, F., Witasse, O., Winningham, J., et al. (2006), Origins of the Martian aurora observed by Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars (SPICAM) on board Mars Express, J. Geophys. Res., 111(A), 09313, doi:10.1029/2006JA011763.Google Scholar
Leblanc, F., Modolo, R., Curry, S., et al. (2015), Mars heavy ion precipitating flux as measured by Mars Atmosphere and Volatile Evolution, Geophys. Res. Lett., 42, 91359141, doi:10.1002/2015GL066170.CrossRefGoogle Scholar
Ledvina, S. A., Ma, Y. J., and Kallio, E. (2008), Modeling and simulating flowing plasmas and related phenomena, Space Sci. Rev., 139(1), 143189, doi:10.1007/s11214-008-9384-6.Google Scholar
Liemohn, M. W., Mitchell, D. L., Nagy, A. F., et al. (2003), Comparisons of electron fluxes measured in the crustal fields at Mars by the MGS magnetometer/electron reflectometer instrument with a B field-dependent transport code, J. Geophys. Res., 108(E), 5134, doi:10.1029/2003JE002158.Google Scholar
Liemohn, M. W. et al. (2006), Numerical interpretation of high-altitude photoelectron observations, Icarus, 182(2), 383395, doi:10.1016/j.icarus.2005.10.036.Google Scholar
Lillis, R. J., Frey, H. V., and Manga, M. (2008), Rapid decrease in Martian crustal magnetization in the Noachian era: implications for the dynamo and climate of early Mars, Geophys. Res. Lett., 35(1), 14203, doi:10.1029/2008GL034338.Google Scholar
Lillis, R. J., Fillingim, M. O., and Brain, D. A. (2011), Three-dimensional structure of the Martian nightside ionosphere: predicted rates of impact ionization from Mars Global Surveyor magnetometer and electron reflectometer measurements of precipitating electrons, J. Geophys. Res., 116(A), 12317, doi:10.1029/2011JA016982.Google Scholar
Lillis, R. J., Brain, D. A., Delory, G. T., et al. (2012), Evidence for superthermal secondary electrons produced by SEP ionization in the Martian atmosphere, J. Geophys. Res., 117(E), 03004, doi:10.1029/2011JE003932.CrossRefGoogle Scholar
Lillis, R. J., Brain, D. A., Bougher, S. W., et al. (2015), Characterizing atmospheric escape from Mars today and through time, with MAVEN, Space Sci. Rev., 195, 357422.Google Scholar
Liu, Y., Nagy, A. F., Groth, C. P. T., et al. (1999), 3D multi-fluid MHD studies of the solar wind interaction with Mars, Geophys. Res. Lett., 26(1), 26892692, doi:10.1029/1999GL900584.Google Scholar
Luhmann, J. G. (1990), A model of the ion wake of Mars, Geophysical Research Letters, 17, 869872, doi:10.1029/GL017i006p00869.Google Scholar
Luhmann, J. G. (1992), Pervasive large-scale magnetic fields in the Venus nightside ionosphere and their implications, Journal of Geophysical Research, 97, 61036121, doi:10.1029/92JE00514.Google Scholar
Luhmann, J. G. (1995), Plasma interactions with unmagnetized bodies, Introduction to Space Physics.Google Scholar
Luhmann, J., and Kozyra, J. U. (1991), Dayside pickup oxygen ion precipitation at Venus and Mars – spatial distributions, energy deposition and consequences, J. Geophys. Res., 96, 54575467.Google Scholar
Luhmann, J. G., and Schwingenschuh, K. (1990), A model of the energetic ion environment of Mars, Journal of Geophysical Research, 95, 939945, doi:10.1029/JA095iA02p00939.Google Scholar
Luhmann, J. G., Russell, C. T., Brace, L. H., and Vaisberg, O. L. (1992a), The intrinsic magnetic field and solar-wind interaction of Mars, In Mars, 10901134.Google Scholar
Luhmann, J. G., Johnson, R. E., and Zhang, M. H. G. (1992b), Evolutionary impact of sputtering of the Martian atmosphere by O+ pickup ions, Geophysical Research Letters, 19, 21512154, doi:10.1029/92GL02485.Google Scholar
Luhmann, J. G., Acuña, M. H., Purucker, M., Russell, C. T., and Lyon, J. G. (2002), The Martian magnetosheath: how Venus-like? Planetary and Space Science, 50(5), 489502, doi:10.1016/S0032-0633(02)00028-4.Google Scholar
Luhmann, J. G., Dong, C., Ma, Y., et al. (2015), Implications of MAVEN Mars near-wake measurements and models, Geophys. Res. Lett., 42, 90879094, doi:10.1002/2015GL066122.Google Scholar
Lundin, R. (2011), Ion acceleration and outflow from Mars and Venus: an overview, Space Sci. Rev., 162(1), 309334, doi:10.1007/s11214-011-9811-y.Google Scholar
Lundin, R., Borg, H., Hultqvist, B., Zakharov, A., and Pellinen, R. (1989), First measurements of the ionospheric plasma escape from Mars, Nature, 341, 609612, doi:10.1038/341609a0.Google Scholar
Lundin, R., Zakharov, A., Pellinen, R., et al. (1990), ASPERA/Phobos measurements of the ion outflow from the Martian ionosphere, Geophysical Research Letters, 17, 873876, doi:10.1029/GL017i006p00873.Google Scholar
Lundin, R., Norberg, O., Dubinin, E. M., Pisarenko, N., and Koskinen, H. (1991), On the momentum transfer of the solar wind to the Martian topside ionosphere, Geophysical Research Letters, 18, 10591062, doi:10.1029/90GL02604.Google Scholar
Lundin, R., Barabash, S., Andersson, H., et al. (2004), Solar wind-induced atmospheric erosion at Mars: first results from ASPERA-3 on Mars Express, Science, 305(5), 19331936, doi:10.1126/science.1101860.Google Scholar
Lundin, R., Winningham, D., Barabash, S., et al. (2006), Plasma acceleration above Martian magnetic anomalies, Science, 311(5), 980983, doi:10.1126/science.1122071.Google Scholar
Lundin, R., Barabash, S., Fedorov, A., et al. (2008), Solar forcing and planetary ion escape from Mars, Geophys. Res. Lett., 35(9), 09203, doi:10.1029/2007GL032884.Google Scholar
Lundin, R., Barabash, S., Holmström, M., et al. (2009), Atmospheric origin of cold ion escape from Mars, Geophys. Res. Lett., 36(1), 17202, doi:10.1029/2009GL039341.Google Scholar
Lundin, R., Barabash, S., Yamauchi, M., Nilsson, H., and Brain, D. (2011), On the relation between plasma escape and the Martian crustal magnetic field, Geophys. Res. Lett., 38(2), 02102, doi:10.1029/2010GL046019.Google Scholar
Ma, Y.-J., and Nagy, A. F. (2007), Ion escape fluxes from Mars, Geophys. Res. Lett., 34(8), 08201, doi:10.1029/2006GL029208.Google Scholar
Ma, Y., Nagy, A. F., Hansen, K. C., et al. (2002), Three-dimensional multispecies MHD studies of the solar wind interaction with Mars in the presence of crustal fields, J. Geophys. Res. – Space, 107(A), 1282, doi:10.1029/2002JA009293.Google Scholar
Ma, Y., Nagy, A. F., Sokolov, I. V., and Hansen, K. C. (2004), Three-dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars, J. Geophys. Res., 109(A), 07211, doi:10.1029/2003JA010367.Google Scholar
Manning, C. V., Ma, Y., Brain, D. A., McKay, C. P., and Zahnle, K. J. (2011), Parametric analysis of modeled ion escape from Mars, Icarus, 212(1), 131137, doi:10.1016/j.icarus.2010.11.028.Google Scholar
McElroy, M. B. (1972), Mars: an evolving atmosphere, Science, 175, 443445.Google Scholar
McElroy, M. B., Kong, T. Y., and Yung, Y. L. (1977), Photochemistry and evolution of Mars’ atmosphere – a Viking perspective, J. Geophys. Res., 82, 43794388.Google Scholar
McKenna-Lawlor, S. M. P., Dryer, M., Fry, C. D., et al. (2005), Predictions of energetic particle radiation in the close Martian environment, J. Geophys. Res., 110(A), 03102, doi:10.1029/2004JA010587.Google Scholar
Melosh, H. J., and Vickery, A. M. (1989), Impact erosion of the primordial atmosphere of Mars, Nature, 338, 487489, doi:10.1038/338487a0.Google Scholar
Mendillo, M., Withers, P., Hinson, D., Rishbeth, H., and Reinisch, B. (2006), Effects of Solar Flares on the Ionosphere of Mars, Science, 311(5), 11351138, doi:10.1126/science.1122099.Google Scholar
Mitchell, D. L., Lin, R. P., Rème, H., et al. (2000), Oxygen Auger electrons observed in Mars’ ionosphere, Geophys. Res. Lett., 27(1), 18711874, doi:10.1029/1999GL010754.Google Scholar
Mitchell, D. L., Lin, R. P., Mazelle, C., et al. (2001), Probing Mars’ crustal magnetic field and ionosphere with the MGS Electron Reflectometer, J. Geophys. Res., 106(E), 2341923428, doi:10.1029/2000JE001435.Google Scholar
Modolo, R., and Chanteur, G. M. (2008), A global hybrid model for Titan’s interaction with the Kronian plasma: application to the Cassini Ta flyby, J. Geophys. Res., 113(A), 01317, doi:10.1029/2007JA012453.Google Scholar
Modolo, R., Chanteur, G. M., Dubinin, E., and Matthews, A. P. (2005), Influence of the solar EUV flux on the Martian plasma environment, Ann. Geophys. – Germany, 23(2), 433444, doi:10.5194/angeo-23-433-2005.Google Scholar
Modolo, R., Chanteur, G. M., Dubinin, E., and Matthews, A. P. (2006), Simulated solar wind plasma interaction with the Martian exosphere: influence of the solar EUV flux on the bow shock and the magnetic pile-up boundary, Ann. Geophys. – Germany, 24(12), 34033410.Google Scholar
Modolo, R., Chanteur, G. M., and Dubinin, E. (2012), Dynamic Martian magnetosphere: transient twist induced by a rotation of the IMF, Geophys. Res. Lett., 39(1), 01106, doi:10.1029/2011GL049895.Google Scholar
Moore, T. E., and Horwitz, J. L. (2007), Stellar ablation of planetary atmospheres, Rev. Geophys., 45(3), 3002, doi:10.1029/2005RG000194.Google Scholar
Morgan, D. D., Gurnett, D. A., Kirchner, D. L., et al. (2006), Solar control of radar wave absorption by the Martian ionosphere, Geophys. Res. Lett., 33(13), doi:10.1029/2006GL026637.Google Scholar
Moses, S. L., Coroniti, F. V., and Scarf, F. L. (1988), Expectations for the microphysics of the Mars-solar wind interaction, Geophysical Research Letters, 15, 429432, doi:10.1029/GL015i005p00429.Google Scholar
Nagy, A. F., Liemohn, M. W., Fox, J. L., and Kim, J. (2001), Hot carbon densities in the exosphere of Mars, J. Geophys. Res., 106(A), 2156521568, doi:10.1029/2001JA000007.Google Scholar
Nagy, A. F., Winterhalter, D., Sauer, K., et al. (2004), The plasma environment of Mars, Space Sci. Rev., 111(1), 33114, doi:10.1023/B:SPAC.0000032718.47512.92.Google Scholar
Najib, D., Nagy, A. F., Tóth, G., and Ma, Y. (2011), Three-dimensional, multifluid, high spatial resolution MHD model studies of the solar wind interaction with Mars, J. Geophys. Res. – Space, 116(A), A05204, doi:10.1029/2010JA016272.Google Scholar
Němec, F., Morgan, D. D., Gurnett, D. A., and Duru, F. (2010), Nightside ionosphere of Mars: radar soundings by the Mars Express spacecraft, J. Geophys. Res., 115(E), 12009, doi:10.1029/2010JE003663.Google Scholar
Němec, F., Morgan, D. D., Gurnett, D. A., and Brain, D. A. (2011), Areas of enhanced ionization in the deep nightside ionosphere of Mars, J. Geophys. Res., 116(E), 06006, doi:10.1029/2011JE003804.Google Scholar
Nielsen, E., Zou, H., Gurnett, D. A., et al. (2006), Observations of vertical reflections from the topside Martian ionosphere, Space Sci. Rev., 126(1–4), 373388, doi:10.1007/s11214-006-9113-y.Google Scholar
Nielsen, E., Morgan, D., Kirchner, D., Plaut, J., and Picardi, G. (2007), Absorption and reflection of radio waves in the Martian ionosphere, Planetary and Space Science, 55(7–8), 864870, doi:10.1016/j.pss.2006.10.005.Google Scholar
Nilsson, H., Carlsson, E., Gunell, H., et al. (2006), Investigation of the influence of magnetic anomalies on ion distributions at Mars, Space Sci. Rev., 126(1–4), 355372, doi:10.1007/s11214-006-9030-0.Google Scholar
Nilsson, H., Carlsson, E., Brain, D. A., et al. (2010), Ion escape from Mars as a function of solar wind conditions: a statistical study, Icarus, 206(1), 4049, doi:10.1016/j.icarus.2009.03.006.Google Scholar
Nilsson, H., Edberg, N., Stenberg, G., and Barabash, S. (2011), Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields, Icarus, doi:10.1016/j.icarus.2011.08.003.Google Scholar
Nilsson, H., Stenberg, G., Futaana, Y., et al. (2012), Ion distributions in the vicinity of Mars: signatures of heating and acceleration processes, Earth, 64(2), 135148, doi:10.5047/eps.2011.04.011.Google Scholar
Øieroset, M., Mitchell, D. L., Phan, T. D., Lin, R. P., and Acuña, M. H. (2001), Hot diamagnetic cavities upstream of the Martian bow shock, Geophys. Res. Lett., 28(5), 887890, doi:10.1029/2000GL012289.Google Scholar
Ong, M., Luhmann, J. G., Russell, C. T., Strangeway, R. J., and Brace, L. H. (1991), Venus ionospheric “clouds” – relationship to the magnetosheath field geometry, Journal of Geophysical Research, 96, 11133, doi:10.1029/91JA01100.Google Scholar
Opgenoorth, H. J., Dhillon, R. S., Rosenqvist, L., et al. (2010), Day-side ionospheric conductivities at Mars, Planetary and Space Science, 58(10), 11391151, doi:10.1016/j.pss.2010.04.004.Google Scholar
Owen, T., Maillard, J. P., de Bergh, C., and Lutz, B. L. (1988), Deuterium on Mars – the abundance of HDO and the value of D/H, Science, 240, 17671770.Google Scholar
Penz, T., Erkaev, N. V., Biernat, H. K., et al. (2004), Ion loss on Mars caused by the Kelvin–Helmholtz instability, Planetary and Space Science, 52(13), 11571167, doi:10.1016/j.pss.2004.06.001.Google Scholar
Penz, T., Arshukova, I. L., Terada, N., et al. (2005), A comparison of magnetohydrodynamic instabilities at the Martian ionopause, Advances in Space Research, 36(1), 20492056, doi:10.1016/j.asr.2004.11.039.Google Scholar
Phillips, J. L., Luhmann, J. G., Knudsen, W. C., and Brace, L. H. (1988), Asymmetries in the location of the Venus ionopause, Journal of Geophysical Research, 93, 39273941, doi:10.1029/JA093iA05p03927.Google Scholar
Podgornyi, I. M., Dubinin, E. M., Israelevich, P. L., and Sonett, C. P. (1982), Comparison of measurements of electromagnetic induction in the magnetosphere of Venus with laboratory simulations, Moon and the Planets, 27, 397406, doi:10.1007/BF00929994.Google Scholar
Purucker, M. E., Johnson, C. L., Winslow, R. M., et al. (2012), Evidence for a crustal magnetic signature on Mercury form MESSENGER magnetometer observations, in 43rd Lunar and Planetary Science Conference, March 19–23, The Woodlands, TX, LPI Contribution No. 1659.Google Scholar
Rahmati, A., Larson, D. E., Cravens, T. E., et al. (2015), MAVEN insights into oxygen pickup ions at Mars, Geophys. Res. Lett., 42, 88708876, doi:10.1002/2015GL065262.Google Scholar
Ribas, I., Guinan, E. F., Güdel, M., and Audard, M. (2005), Evolution of the solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1–1700 Å), Astrophysical Journal, 622(1), 680694, doi:10.1086/427977.Google Scholar
Richer, E., Chanteur, G. M., Modolo, R., and Dubinin, E. (2012), Reflection of solar wind protons on the Martian bow shock: investigations by means of 3-dimensional simulations, Geophys. Res. Lett., 39(1), 17101, doi:10.1029/2012GL052858.Google Scholar
Russell, C. T. (2001), Solar wind and interplanetary magnetic field: a tutorial, Space Weather, 125, 7389, doi:10.1029/GM125p0073.Google Scholar
Russell, C. T., and Elphic, R. C. (1979), Observation of magnetic flux ropes in the Venus ionosphere, Nature, 279, 616618, doi:10.1038/279616a0.Google Scholar
Russell, C. T., and Vaisberg, O. (1983), The interaction of the solar wind with Venus, in Venus, Tucson, AZ, University of Arizona Press, 873940 (A83-37401 17-91).Google Scholar
Russell, C. T., Luhmann, J. G., Schwingenschuh, K., Riedler, W., and Yeroshenko, Y. (1990), Upstream waves at Mars – PHOBOS observations, Geophysical Research Letters, 17, 897900, doi:10.1029/GL017i006p00897.Google Scholar
Safaeinili, A., Kofman, W., Mouginot, J., et al. (2007), Estimation of the total electron content of the Martian ionosphere using radar sounder surface echoes, Geophys. Res. Lett., 34(2), 23204, doi:10.1029/2007GL032154.Google Scholar
Sagdeev, R. Z., and Zakharov, A. V. (1989), Brief history of the Phobos mission, Nature, 341(6243), 581585, doi:10.1038/341581a0.Google Scholar
Schneider, N. M., Deighan, J. I., Jain, S. K., et al. (2015), Discovery of diffuse aurora on Mars, Science, 350(6261), doi:10.1126/science.aad0313.Google Scholar
Schwadron, N. A., Townsend, L., Kozarev, K., et al. (2010), Earth–Moon–Mars Radiation Environment Module framework, Space Weather, 8(1), doi:10.1029/2009SW000523.Google Scholar
Simon, S., Boesswetter, A., Bagdonat, T., and Motschmann, U. (2007), Physics of the Ion Composition Boundary: a comparative 3-D hybrid simulation study of Mars and Titan, Ann. Geophys. – Germany, 25(1), 99115.Google Scholar
Spreiter, J. R., Summers, A. L., and Rizzi, A. W. (1970), Solar wind flow past nonmagnetic planets – Venus and Mars, Planet. Space Sci., 18, 12811299.Google Scholar
Tatrallyay, M., Gévai, G., Apáthy, I., et al. (1997), Magnetic field overshoots in the Martian bow shock, J. Geophys. Res., 102(A), 21572164, doi:10.1029/96JA00073.Google Scholar
Terada, N., Machida, S., and Shinagawa, H. (2002), Global hybrid simulation of the Kelvin–Helmholtz instability at the Venus ionopause, J. Geophys. Res. – Space, 107(A), 1471, doi:10.1029/2001JA009224.Google Scholar
Terada, N., Kulikov, Y. N., Lammer, H., et al. (2009), Atmosphere and water loss from early Mars under extreme solar wind and extreme ultraviolet conditions, Astrobiology, 9(1), 5570, doi:10.1089/ast.2008.0250.Google Scholar
Trotignon, J. G., Mazelle, C., Bertucci, C., and Acuña, M. H. (2006), Martian shock and magnetic pile-up boundary positions and shapes determined from the Phobos 2 and Mars Global Surveyor data sets, Planetary and Space Science, 54(4), 357369, doi:10.1016/j.pss.2006.01.003.Google Scholar
Uluşen, D., and Linscott, I. (2008), Low-energy electron current in the Martian tail due to reconnection of draped interplanetary magnetic field and crustal magnetic fields, J. Geophys. Res., 113(E), 06001, doi:10.1029/2007JE002916.Google Scholar
Uluşen, D., Brain, D. A., Luhmann, J. G., and Mitchell, D. L. (2012), Investigation of Mars’ ionospheric response to solar energetic particle events, J. Geophys. Res., 117(A), 12306, doi:10.1029/2012JA017671.Google Scholar
Valeille, A., Combi, M. R., Bougher, S. W., Tenishev, V., and Nagy, A. F. (2009a), Three-dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 2. Solar cycle, seasonal variations, and evolution over history, J. Geophys. Res. – Planets, 114, E11006, doi:10.1029/2009JE003389.Google Scholar
Valeille, A., Tenishev, V., Bougher, S. W., Combi, M. R., and Nagy, A. F. (2009b), Three-dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 1. General description and results at equinox for solar low conditions, J. Geophys. Res. – Planets, 114, E11005, doi:10.1029/2009JE003388.Google Scholar
Verigin, M. I., Shuttle, N. M., Galeev, A. A., et al. (1991), Ions of planetary origin in the Martian magnetosphere (Phobos 2/TAUS experiment), Planet. Space Sci., 39, 131137, doi:10.1016/0032-0633(91)90135-W.CrossRefGoogle Scholar
Verigin, M. I., Kotova, G. A., Remizov, A. P., et al. (2001), Evidence of the influence of equatorial Martian crustal magnetization on the position of the planetary magnetotail boundary by phobos 2 data, Advances in Space Research, 28(6), 885889, doi:10.1016/S0273-1177(01)00510-5.Google Scholar
Vignes, D., Acuña, M. H., Connerney, J. E. P., et al. (2002), Factors controlling the location of the Bow Shock at Mars, Geophys. Res. Lett., 29(9), 42–1, doi:10.1029/2001GL014513.Google Scholar
Vignes, D., Acuña, M. H., Connerney, J. E. P., et al. (2004), Magnetic flux ropes in the Martian atmosphere: global characteristics, Space Sci. Rev., 111(1), 223231, doi:10.1023/B:SPAC.0000032716 .21619.f2.Google Scholar
Watson, C. C., Haff, P. K., and Tombrello, T. A. (1980), Solar wind sputtering effects in the atmospheres of Mars and Venus, In Lunar and Planetary Science Conference, 11, 24792502.Google Scholar
Wei, H. Y., and Russell, C. T. (2006), Proton cyclotron waves at Mars: exosphere structure and evidence for a fast neutral disk, Geophys. Res. Lett., 33(23), doi:10.1029/2006GL026244.Google Scholar
Withers, P. (2005), Ionospheric characteristics above Martian crustal magnetic anomalies, Geophys. Res. Lett., 32(16), doi:10.1029/2005GL023483.Google Scholar
Withers, P. (2009), A review of observed variability in the dayside ionosphere of Mars, Advances in Space Research, 44(3), 277307, doi:10.1016/j.asr.2009.04.027.Google Scholar
Wolff, R. S., Goldstein, B. E., and Yeates, C. M. (1980), The onset and development of Kelvin–Helmholtz instability at the Venus ionopause, J. Geophys. Res., 85, 76977707, doi:10.1029/JA085iA13p07697.Google Scholar
Wood, B. E., Müller, H. R., Zank, G. P., Linsky, J. L., and Redfield, S. (2005), New mass-loss measurements from astrospheric Lyα absorption, Astrophysical Journal, 628(2), L143–L146, doi:10.1086/432716.Google Scholar
Yagi, M., Leblanc, F., Chaufray, J. Y., et al. (2012), Mars exospheric thermal and non-thermal components: seasonal and local variations, Icarus, 221(2), 682693, doi:10.1016/j.icarus.2012.07.022.Google Scholar
Yamauchi, M., Futaana, Y., Fedorov, A., et al. (2012), Ion acceleration by multiple reflections at Martian bow shock, Earth, 64(2), 6171, doi:10.5047/eps.2011.07.007.Google Scholar
Yau, A. W., Abe, T., and Peterson, W. K. (2007), The polar wind: recent observations, Journal of Atmospheric and Solar-Terrestrial Physics, 69(1), 19361983, doi:10.1016/j.jastp.2007.08.010.Google Scholar
Yeroshenko, Y., Riedler, W., Schwingenschuh, K., Luhmann, J. G., and Ong, M. (1990), The magnetotail of Mars – PHOBOS observations, Geophysical Research Letters, 17, 885888, doi:10.1029/GL017i006p00885.Google Scholar
Yung, Y. L., Wen, J. S., Pinto, J. P., et al. (1988), HDO in the Martian atmosphere – implications for the abundance of crustal water, Icarus, 76(1), 146159, doi:10.1016/0019-1035(88)90147-9.Google Scholar
Zahnle, K. J., and Kasting, J. F. (1986), Mass fractionation during transonic escape and implications for loss of water from Mars and Venus, Icarus, 68, 462480, doi:10.1016/0019-1035(86)90051-5.Google Scholar
Zhang, T. L., Luhmann, J. G., and Russell, C. T. (1991a), The magnetic barrier at Venus, Journal of Geophysical Research, 96, 11145, doi:10.1029/91JA00088.Google Scholar
Zhang, T. L., Schwingenschuh, K., Lichtenegger, H., Riedler, W., and Russell, C. T. (1991b), Interplanetary magnetic field control of the Mars bow shock – evidence for Venus like interaction, Journal of Geophysical Research, 96, 11265, doi:10.1029/91JA01099.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×