Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T20:12:47.663Z Has data issue: false hasContentIssue false

5 - Mars Clouds

Published online by Cambridge University Press:  05 July 2017

Robert M. Haberle
Affiliation:
NASA Ames Research Center
R. Todd Clancy
Affiliation:
Space Science Institute, Boulder, Colorado
François Forget
Affiliation:
Laboratoire de Météorologie Dynamique, Paris
Michael D. Smith
Affiliation:
NASA-Goddard Space Flight Center
Richard W. Zurek
Affiliation:
NASA-Jet Propulsion Laboratory, California
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, E., and Leovy, C. (1978) Mariner 9 television limb observations of dust and ice hazes on Mars, J. Atmos. Sci., 35, 723734.Google Scholar
Bailey, M. P., and Hallett, J. (2009) A comprehensive habit diagram for atmospheric ice crystals: confirmation from the laboratory, AIRS II, and other field studies, J. Atmos. Sci., 66, 28882899.Google Scholar
Benson, J. L., Bonev, B. P., James, P. B., Shan, K. J., Cantor, B. A., and Caplinger, M. A. (2003) The seasonal behavior of water ice clouds in the Tharsis and Valles Marineris regions of Mars: Mars Orbiter Camera Observations, Icarus, 165, 3452.CrossRefGoogle Scholar
Benson, J. L., James, P. B., Cantor, B. A., and Remigio, R. (2006) Interannual variability of water ice clouds over major Martian volcanoes observed by MOC, Icarus, 184, 365371.Google Scholar
Benson, J. L., Kass, D. M., Kleinböhl, A., et al. (2010) Mars’ south polar hood as observed by the Mars Climate Sounder, J. Geophys. Res., 115, E12015, doi:10.1029/2009JE003554.CrossRefGoogle Scholar
Benson, J. L., Kass, D. M., and Kleinböhl, A. (2011) Mars’ north polar hood as observed by the Mars Climate Sounder, J. Geophys. Res., 116, E03008, doi:10.1029/2010JE003693.Google Scholar
Bertaux, J.-L., Fonteyn, D., Korablev, O., et al. (2000) The study of the Martian atmosphere from top to bottom with SPICAM light on Mars Express, Planet. Space Sci., 48, 13031320.Google Scholar
Bibring, J.-P., Soufflot, A., Berthé, M., et al. (2004) OMEGA: Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité, in Mars Express: The Scientific Payload, Eur. Space Agency Spec. Publ., ESA-SP 1240, 3750.Google Scholar
Böttger, H. M., Lewis, S. R., Read, R. L., and Forget, F. (2005) The effects of the Martian regolith on GCM water cycle simulations, Icarus, 177, 174189.Google Scholar
Briggs, G. A., and Leovy, C. B. (1974) Mariner 9 observations of the Mars north polar hood, Bull. Amer. Met. Soc., 55, 278296.Google Scholar
Briggs, G., Klaasen, K., Thorpe, T., and Wellman, J. (1977) Martian dynamical phenomena during June-November 1976: Viking Orbiter imaging results, J. Geophys. Res., 82, 41214149.Google Scholar
Brown, A. J., Calvin, W. M., McGuire, P. C., and Murchie, S. L. (2010) Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) south polar mapping: first Mars year of observations, J. Geophys. Res., 112, E04004, doi: 10.1029/2006JE002805.Google Scholar
Burlakov, A. V., and Rodin, A. V. (2012) A one-dimensional numerical model of H2O cloud formation in the Martian atmosphere, Solar System Res., 46, No. 1, 1830.CrossRefGoogle Scholar
Cantor, B., Malin, M., and Edgett, K. S. (2002) Multiyear Mars Orbiter Camera (MOC) observations of repeated Martian weather phenomena during the northern summer season, J. Geophys. Res., 107, 10.1029/2001JE001588.Google Scholar
Cantor, B. A., Malin, M. C., Wolff, M. J., et al. (2008) Observations of the Martian atmosphere by MRO-MARCI: an overview of 1 Mars year, in Proceedings of the Third International Workshop on the Mars Atmosphere: Modeling and Observations, LPI Contribution No. 1447, 9075.Google Scholar
Cantor, B. A., James, P. B., and Calvin, W. M. (2010) MARCI and MOC observations of the atmosphere and surface cap in the north polar region of Mars, Icarus, 208, 6181.Google Scholar
Carr, M. H. (1986) Mars: a water rich planet?, Icarus, 56, 187216.Google Scholar
Chassefière, E., Blamont, J. E., Krasnopolsky, V. A., et al. (1992) Vertical structure and size distribution of Martian aerosols from solar occultation measurements, Icarus, 97, 4669.Google Scholar
Christensen, P. R., Anderson, D. L., Chase, S. C., et al. (1998) Initial results from the Mars Global Surveyor thermal emission spectrometer experiment, Science, 279, 16821685.Google Scholar
Christensen, P. R., Jakosky, B. M., Kieffer, H. H., et al. (2003) The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey mission, Space Sci. Rev., 110, 85130.CrossRefGoogle Scholar
Clancy, R. T., and Nair, H. (1996) Annual (perihelion-aphelion) cycles in the photochemical behavior of the global Mars atmosphere, J. Geophys. Res., 101, 1278512790.Google Scholar
Clancy, R. T., and Sandor, B. J. (1998) CO2 ice clouds in the upper atmosphere of Mars, Geophys. Res. Lett., 25, 489492.Google Scholar
Clancy, R. T., Grossman, A. W., Wolff, M. J., et al. (1996) Water vapor saturation at low altitudes around Mars aphelion: a key to Mars climate? Icarus, 122, 3662.Google Scholar
Clancy, R. T., Wolff, M. J., and Christensen, P. R. (2003) Mars aerosol studies with the MGS TES emission phase function observations: optical depths, particle sizes, and ice cloud types versus latitude and solar longitude, J. Geophys. Res., 108, E9, 120, 2003.Google Scholar
Clancy, R. T., Wolff, M. J., Whitney, B. A., Cantor, B. A., and Smith, M. D. (2007) Mars equatorial mesospheric clouds: global occurrence and physical properties from Mars Global Surveyor TES and MOC limb observations, J. Geophys. Res., 112, E04004.Google Scholar
Clancy, R. T., Wolff, M. J., Malin, M. C., Cantor, B. A., and Michaels, T. I. (2009) Valles Marineris cloud trails, J. Geophys. Res., 114, E11, doi:10.1029/2008JE003323.CrossRefGoogle Scholar
Clancy, R. T., Wolff, M. J., Whitney, B. A., et al. (2010) Extension of atmospheric dust loading to high altitudes during the 2001 global dust storm: MGS TES limb observations, Icarus, 207, 98109.Google Scholar
Clancy, R. T., Sandor, B. J., Wolff, M. J., et al. (2012) Extensive MRO CRISM observations of 1.27 µm O2 airglow in Mars polar night and their comparison to MRO MCS temperature profiles and LMDGCM simulations, J. Geophys. Res., 117, E00J10, doi:10.1029/2011JE004018.Google Scholar
Clancy, R. T., Smith, M. D., Wolff, M. J., et al. (2014) CRISM limb observations of Mars mesospheric ice clouds: two new results, Eighth International Conference on Mars, July 14–18, Pasadena, CA., LPI Contribution No. 1791, 1006.Google Scholar
Colaprete, A. and Toon, O. B. (2002) Carbon dioxide snow storms during the polar night on Mars, J. Geophys. Res., 107, E7, 5051, 10.1029/2001JE001758.CrossRefGoogle Scholar
Colaprete, A., and Toon, O. B. (2003) Carbon dioxide clouds in an early dense Martian atmosphere, J. Geophys. Res., 108, E4, 5025, doi:10.1029/2002JE001967.Google Scholar
Colaprete, A., Toon, O. B., and Magalhães, J. A. (1999) Cloud formation under Mars Pathfinder conditions, J. Geophys. Res., 104, 90439053, doi:10.1029/1998JE900018.Google Scholar
Colaprete, A., Haberle, R. M., and Toon, O. B. (2003) Formation of convective carbon dioxide clouds near the south pole of Mars, J. Geophys. Res., 108, E7, 5081, doi:10.1029/2003JE002053.Google Scholar
Colaprete, A., Barnes, J. R., Haberle, R. M., et al. (2005) Albedo of the south pole of Mars determined by topographical forcing of atmosphere dynamics, Nature, 435, 184188.Google Scholar
Colaprete, A., Barnes, J. R., Haberle, R. M., and Montmessin, F. (2008) CO2 clouds, CAPE and convection on Mars: observations and general circulation modeling, Planet. Space Sci., 56, 150180.Google Scholar
Colburn, D. S., Pollack, J. B., and Haberle, R. M. (1989) Diurnal variations in optical depth at Mars, Icarus, 79, 159189.Google Scholar
Curran, R. J., Conrath, B. J., Hanel, R. A., Kunde, V. G., and Pearl, J. C. (1973) Mars: Mariner 9 spectroscopic evidence for H2O ice clouds, Science, 182, 381383.Google Scholar
Daerden, F., Larsen, N., Chabrillat, S., et al. (2007) A 3D-CTM with detailed online PSC microphysics: analysis of the Antarctic winter 2003 by comparison with satellite observations, Atmos. Chem. Phys., 7, 17551772.Google Scholar
Daerden, F., Whiteway, J. A., Davy, R., et al. (2010) Simulating observed boundary layer clouds on Mars, Geophys. Res. Lett., 37, L04203, doi:10.1029/2009GL041523.CrossRefGoogle Scholar
Davy, R., Davis, J. A., Taylor, P. A., et al. (2010) Initial analysis of air temperature and related data from the Phoenix MET station and their use in estimating turbulent heat fluxes, J. Geophys. Res., 115, E00E13, doi:10.1029/2009JE003444.Google Scholar
Deirmidjian, D. (1964) Scattering and polarization properties of water clouds and hazes in the visible and infrared, Appl. Opt., 3, 187202.Google Scholar
Dickinson, C., Whiteway, J. A., Komguem, L., Moores, J. E., and Lemmon, M. T. (2010) Lidar measurements of clouds in the planetary boundary layer on Mars, Geophys. Res. Lett., 37, doi:10.1029/2010GL044317.CrossRefGoogle Scholar
Dollfus, A. (1957) Etude des planets pour la polarization de leur Lumiere, Ann. Astrophys. Suppl., 4, 3114.Google Scholar
Farmer, C. B., Davies, D. W., Holland, A. L., Laporte, D. D., and Doms, P. E. (1977) Mars: water vapor observations from the Viking Orbiters, J. Geophys. Res., 82, 42254248.Google Scholar
Fedorova, A. A., Korablev, O. I., Bertaux, J.-L., et al. (2009) Solar infrared occultation observations by SPICAM experiment on Mars-Express: simultaneous measurements of the vertical distributions of H2O, CO2 and aerosol, Icarus, 200, 96117.Google Scholar
Fedorova, A. A., Montmession, F., Rodin, A. V., et al. (2014) Evidence for a bimodal size distribution for suspended aerosol particles on Mars, Icarus, 231, 239260.CrossRefGoogle Scholar
Forget, F., and Pierrehumbert, R. T. (1997) Warming early Mars with carbon dioxide clouds that scatter infrared radiation, Science, 278, 12731276.Google Scholar
Forget, F., Hourdin, F., and Talagrand, O. (1998) CO2 snowfall on Mars: simulation with a general circulation model, Icarus, 131, 302316.Google Scholar
Forget, F., Haberle, R. M., Montmessin, F., and Levrard, B. (2006) Formation of glaciers on Mars by atmospheric precipitation at high obliquity, Science, 311, 368371.Google Scholar
Forget, F., Wordsworth, R., Millour, E., et al. (2013) 3D modelling of the early Martian climate under a denser CO2 atmosphere: temperatures and CO2 ice clouds, Icarus, 222, 8199.Google Scholar
French, R. G., Gierasch, P. J., Popp, B. D., and Yerdon, R. J. (1981) Global patterns in cloud forms on Mars, Icarus, 45, 468493.Google Scholar
Fuchs, N. A., The Mechanics of Aerosols, Pergamon, New York, 1964.Google Scholar
Gallagher, M. W., Connolly, P. J., Whiteway, J., et al. (2005) An overview of the microphysical structure of cirrus clouds observed during EMERALD-1, Q. J. R. Meteorol. Soc., 131, 11431169, doi:10.1256/qj.03.138.Google Scholar
Gierasch, P., Thomas, P., French, R., and Veverka, J. (1979) Spiral clouds on Mars: a new atmospheric phenomenon, Geophys. Res. Lett., 6, 405408.Google Scholar
Glandorf, D. L., Colaprete, A., Tolbert, M. A., and Toon, O. B. (2002) CO2 snow on Mars and early Earth: experimental constraints, Icarus, 160, 6672.Google Scholar
Glenar, D. A., Samuelson, R. E., Pearl, J. C., Bjoraker, G. L., and Blaney, D. (2003) Spectral imaging of Martian water ice clouds and their diurnal behavior during the 1999 aphelion season (Ls = 130°), Icarus, 161, 297318.Google Scholar
González-Galindo, F., Määttänen, A., Forget, F., and Spiga, A. (2011) The Martian mesosphere as revealed by CO2 cloud observations and General Circulation Modeling, Icarus, 216, 1022.Google Scholar
Guzewich, S. D., Smith, M. D., and Wolff, M. J. (2014) Aerosol particle size retrievals from the Compact Reconnaissance Imaging Spectrometer for Mars, The Fifth International Workshop of the Mars Atmosphere: Modeling and Observation, Oxford, UK, January 1316.Google Scholar
Haberle, R. M., Montmessin, F., Kahre, M. A., et al. (2011) Radiative effects of water ice clouds on the Martian seasonal water cycle, The Fourth International Workshop of the Mars Atmosphere: Modeling and Observation, Paris, France, February 8–11.Google Scholar
Hale, A. S., Tamppari, L. K., Bass, D. S., and Smith, M. D. (2011) Martian water ice clouds: a view from Mars Global Surveyor Thermal Emission Spectrometer, J. Geophys. Res., 116, E04004, doi:10.1029/2009JE003449.Google Scholar
Hanel, R., Conrath, B., Hovis, W., et al. (1972) Investigation of the Martian environment by infrared spectroscopy on Mariner 9, Icarus, 17, 423442.Google Scholar
Hayne, P. O., and Paige, D. A. (2009) Snow clouds and the carbon dioxide cycle on Mars, American Geophysical Fall Meeting, abstract #P53A-1, San Francisco, December 14–18.Google Scholar
Hayne, P. O., Paige, D. A., Schofield, J. T, et al. (2012) Carbon dioxide snow clouds on Mars: south polar winter observations by the Mars Climate Sounder, J. Geophys. Res., 117, E08014, doi:10.1029/2011JE004040.Google Scholar
Hayne, P. O., Paige, D. A., Heavens, N. G., et al. (2014) The role of snowfall in forming the seasonal ice caps of Mars: models and constraints from the Mars Climate Sounder, Icarus, 231, 122130.CrossRefGoogle Scholar
Heavens, N. G., Benson, J. L., Kass, D. M., et al. (2010) Water ice clouds over the Martian tropics during northern summer, Geophys. Res. Lett., 37, L18202, doi:10.1029/2010GL044610.Google Scholar
Heavens, N. G., Richardson, M. I., Kleinböhl, A., et al. (2011) Vertical distribution of dust in the Martian atmosphere during northern spring and summer: high-altitude tropical dust maximum at northern summer solstice, J. Geophys. Res., 116, E01007, doi:10.1029/2010JE003692.Google Scholar
Hinson, D. P., and Wilson, R. J. (2002) Transient eddies in the southern hemisphere of Mars, Geophys. Res. Lett., 29(7), doi: 10.1029/2001GL014103.Google Scholar
Hinson, D. P., and Wilson, R. J. (2004) Temperature inversions, thermal tides, and water ice clouds in the Martian tropics, J. Geophys. Res., 109, E01002, doi:10.1029/2003JE002129.CrossRefGoogle Scholar
Hollingsworth, J. L., Haberle, R. M., Barnes, J. R., et al. (1996) Orographic control of storm zones on Mars, Nature, 380, 413416.Google Scholar
Houben, H., Haberle, R. M., Young, R. E., and Zent, A. P. (1997) Modeling the Martian seasonal water cycle, J. Geophys. Res., 102, 90699084.Google Scholar
Hunt, G. E., and James, P. B. (1985) Martian cloud systems: current knowledge and future observations, Adv. Space. Res., 5, 9399.Google Scholar
Hunt, G. E., Pickersgill, A. O., James, P. B., and Johnson, G. (1980) Some diurnal properties of clouds over the Martian volcanoes, Nature, 286, 362364.Google Scholar
Inada, A., Richardson, M. I., McConnochie, T. H., et al. (2007) High-resolution atmospheric observations by the Mars Odyssey Thermal Emission Imaging System, Icarus, 192, 378395.Google Scholar
Iraci, L. T., Phebus, B. D., Stone, B. M., and Colaprete, A. (2010) Water ice cloud formation on Mars is more difficult that presumed: laboratory studies of ice nucleation on surrogate materials, Icarus, 210, 985991.Google Scholar
Isenor, M., Escribano, R., Preston, T. C., and Signorell, R. (2013) Predicting the infrared band profiles for CO2 cloud particles on Mars, Icarus, 223, 591601.Google Scholar
Ivanov, A. B., and Muhleman, D. O. (2001) Cloud reflection observations: results from the Mars Orbiter Laser Altimeter, Icarus, 154, 190206.Google Scholar
Jakosky, B. M., and Farmer, C. B. (2002) Transient eddies in the southern hemisphere of Mars, Geophys. Res. Lett., 29(7), doi: 10.1029/2001GL014103.Google Scholar
James, P. B., Kieffer, H. H., and Paige, D. A. (1992) The seasonal cycle of carbon dioxide on Mars, in Mars, eds. Kieffer, H. H. et al., University of Arizona Press, Tuscon, AZ.Google Scholar
James, P. B., BellIII, J. F., Clancy, R. T., et al. (1996) Global imaging of Mars by Hubble Space Telescope during the 1995 opposition, J. Geophys. Res., 101, 1888318890.Google Scholar
Jaquin, F., Gierasch, P., and Kahn, R. (1986) The vertical structure of limb hazes in the Martian atmosphere, Icarus, 68, 442461.Google Scholar
Jensen, E. J., Pfister, L., Bui, T.-P., Lawson, P., and Baumgardner, D. (2010) Ice nucleation and cloud microphysical properties in tropical tropopause layer cirrus, Atmos. Chem. Phys., 10, 13691384, doi: 10.5194/acp-10-1369-2010.Google Scholar
Kahn, R. (1984) The spatial and seasonal distribution of Martian clouds and some meteorological implications, J. Geophys. Res., 89, 66716688.Google Scholar
Kahn, R., and Gierasch, P. (1982) Observations of Mars and implications for boundary layer characteristics over slopes, J. Geophys. Res., 87, 867880.Google Scholar
Kass, D. M., Hale, A. S., Schofield, J. T., et al. (2009) MCS Views of Atmospheric Thermal Structure During the 2009 Planet Encircling Dust Event, Mars Dust Cycle Workshop, NASA/CP-2010–216477, 1519.Google Scholar
Kasting, J. F. (1991) CO2 condensation and the climate of early Mars, Icarus, 94, 113.Google Scholar
Kieffer, H. H. (1979) Mars south polar spring and summer temperatures: a residual CO2 frost, J. Geophys. Res., 84, 82638288.Google Scholar
Kieffer, H. H., Neugebauer, G., Munch, G., Chase, Jr., S. C., and Miner, E. (1972) Infrared thermal mapping experiment: the Viking Mars Orbiter, Icarus, 16, 4756.Google Scholar
Kieffer, H. H., Chase, S. C., Miner, E. D., et al. (1976) Infrared thermal mapping of the Martian surface and atmosphere: first results, Science, 193, 780786.Google Scholar
Kieffer, H. H., Jakosky, B. M., and Snyder, C. W. (1992) The planet Mars: from antiquity to the present, in Mars, eds. Kieffer, H. H. et al., University of Arizona Press, Tuscon, AZ, 133.Google Scholar
Kieffer, H. H., Titus, T. N., Mullins, K. F., and Christensen, P. R. (2002) Mars south polar spring and summer behavior observed by TES: seasonal cap evolution controlled by frost grain size, J. Geophys. Res., 105, 96539699.Google Scholar
Kleinböhl, A., Schofield, J. T., Kass, D. M., et al. (2009) Mars Climate Sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity, J. Geophys. Res., 105, 96539699.Google Scholar
Kuroda, T., Medvedev, A. S., Kasaba, Y., and Hartogh, P. (2013) Carbon dioxide ice clouds, snowfalls, and baroclinic waves in the northern winter polar atmosphere, Geophys. Res. Lett., 40, 14841488, doi:10.1002/grl.50326Google Scholar
Ladino, L. A., and Abbatt, J. P. D. (2013) Laboratory investigation of Martian water ice cloud formation using dust aerosol simulants, J. Geophys Res., 109, 1425, doi:10.1029/2012JE004238.Google Scholar
Langevin, Y., Bibring, J.-P., Montmessin, F., et al. (2007) Observations of the south seasonal cap of Mars during recession in 2004–2006 by the OMEGA visible/near-infrared imaging spectrometer on board Mars Express, J. Geophys. Res., 112, E08S12, doi:10.1029/2006JE002841.Google Scholar
Larsen, N., Knudsen, B. M., Svendsen, S. H., et al. (2004) Formation of solid particles in synoptic-scale Arctic PSCs in early winter 2002/2003, Atmos. Chem. and Phys., 4, 113.Google Scholar
Lee, C., Lawson, W. G., Richardson, M. I., et al. (2009) Thermal tides in the Martian middle atmosphere as seen by the Mars Climate Sounder, J. Geophys. Res., 114, E03005, doi:10.1029/2008JE003285.CrossRefGoogle ScholarPubMed
Lefèvre, F., Lebonnois, S., Montmessin, F., and Forget, F. (2004) Three-dimensional modeling of ozone on Mars, J. Geophys Res., 109, 10.1029/2004JE002268.Google Scholar
Lefèvre, F., Bertaux, J.-L., Clancy, R. T., et al. (2008) Heterogeneous chemistry in the atmosphere of Mars, Nature, 454, 971975.Google Scholar
Lemmon, M. T. (2014) Large water ice aerosols in Martian north polar clouds, The Fifth International Workshop of the Mars Atmosphere: Modeling and Observation, Oxford, UK, January 13–16.Google Scholar
Lemmon, M. T., Wolff, M. J., BellIII, J. F., et al. (2015) Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission, Icarus, 251, 96111.Google Scholar
Leovy, C., and Mintz, Y. (1969) Numerical simulation of the atmospheric circulation and climate of Mars, J. Atmos. Sci., 26, 11671190.Google Scholar
Leovy, C. B., Smith, B. A., Young, A. T., and Leighton, R. B. (1971) Mariner Mars 1969: atmospheric results, J. Geophys. Res., 76, 297312.Google Scholar
Leovy, C. B., Briggs, G. A., and Smith, B. A. (1973) Mars atmosphere during the Mariner 9 extended mission: television results, J. Geophys. Res., 78, 42524266.Google Scholar
Listowski, C., Määttänen, A., Riipinen, Montmessin, F., and Lefèvre, F. (2013) Near-pure condensation in the Martian atmosphere: CO2 ice crystal growth, J. Geophys. Res., 118, 21532171, doi:10.1002/jgre.20149.Google Scholar
Listowski, C., Määttänen, A., Montmessin, F., Spiga, A., and Lefèvre, F. (2014) Modeling the microphysics of CO2 ice clouds within wave-induced cold pockets in the Martian mesosphere, Icarus, 237, 239261.Google Scholar
Määttänen, A., Vehkamäki, H., Lauri, A., et al. (2005) Nucleation studies in the Martian atmosphere, J. Geophys. Res., 110, E02002, doi:10.1029/2004JE002308.Google Scholar
Määttänen, A., Montmessin, F., Gondet, B., et al. (2010) Mapping the mesospheric CO2 clouds on Mars: MEx/OMEGA and MEx/HRSC observations and challenges for atmospheric models, Icarus, 209, 452469.Google Scholar
Määttänen, A., Listowski, C., Montmessin, F., et al. (2013) A complete climatology of the aerosol vertical distribution on Mars from MEx/SPICAM UV solar occultations, Icarus, 223, 892941.Google Scholar
Madeleine, J.-B., Forget, F., Millour, E., Navarro, T., and Spiga, A. (2012a) The influence of radiatively active water ice clouds on the Mars climate, Geophys. Res. Lett., 39, L23202, doi:10.1029/2012GL053564.Google Scholar
Madeleine, J.-B., Forget, F., Spica, A., et al. (2012b) Aphelion water-ice cloud mapping and property retrieval using the OMEGA imaging spectrometer onboard Mars Express, J. Geophys. Res., 117, E00J07, doi:10.1029/2011JE003940.Google Scholar
Madeleine, J.-B., Head, J. W., Forget, F., et al. (2014) Recent ice ages on Mars: the role of radiatively active clouds and cloud microphysics, Geophys. Res. Lett., 41, 48734879, doi:10.1002/2014GL059861.Google Scholar
Malin, M. C., Danielson, G. E., Ingersoll, A. P., et al. (1992) Mars Observer Camera, J. Geophys. Res., 97, 76997718.Google Scholar
Malin, M. C., Calvin, W. M., Cantor, B. A., et al. (2008) Climate, weather, and north polar observations from the Mars Reconnaissance Orbiter Mars Color Imager, Icarus, 194, 501512.Google Scholar
Maltagliati, L., Montmessin, F., Fedorova, A., et al. (2011) Evidence of water vapor in excess of saturation in the atmosphere of Mars, Science, 333, 18681871.Google Scholar
Maltagliati, L., Montmessin, F., Korablev, O., et al. (2013) Annual survey of water vapor vertical distribution and water-aerosol coupling in the Martian atmosphere observed by SPICAM/MEx solar occultations, Icarus, 223, 942962.Google Scholar
Marchand, R., and Ackerman, T. (2010) An analysis of cloud cover in multiscale modeling framework global climate model simulations using 4 and 1 km horizontal grids, J. Geophys. Res., 115, D16207, doi:10.1029/2009JD013423.Google Scholar
Martin, L. J. (1975) North Polar Hood Observations during Martian Dust Storms, Icarus, 26, 341352.Google Scholar
Martin, L. J., James, P. B., Dollfus, A., Iwasaki, K., and Beish, J. D. (1992) Telescopic observations: visual, photographic, polarimetric, in Mars, eds. Kieffer, H. H. et al., University of Arizona Press, Tucson, AZ, 3470.Google Scholar
Mason, B. J. (1971) The Physics of Clouds, Clarendon Press, Oxford.Google Scholar
Mateshvili, N., Fussen, D., Vanhellemont, F., et al. (2009) Water ice clouds in the Martian atmosphere: two Martian years of SPICAM nadir UV measurements, Plan. Space Sci., 57, 10221031.Google Scholar
McCleese, D. J., Schofield, J. T., Taylor, F. W., et al. (2007) Mars Climate Sounder: an investigation of thermal and water vapor structure, dust and condensate distributions in the atmosphere, and energy balance of the polar regions, J. Geophys. Res., 112, E05S06, doi:10.1029/2006JE002790.Google Scholar
McCleese, D. J., Heavens, N. G., Schofield, J. T., et al. (2010) Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: seasonal variations in zonal mean temperature, dust, and water ice aerosols, J. Geophys. Res., 115, E12016, doi:10.1029/2010JE003677.Google Scholar
McConnochie, T. H., BellIII, J. F., Savransky, D., et al. (2010) THEMIS-VIS observations of clouds in the Martian mesosphere: altitudes, wind speeds, and decameter-scale morphology, Icarus, 210, 545565.Google Scholar
Michaels, T. I., Colaprete, A., and Rafkin, S. C. R. (2006) Significant vertical water transport by mountain-induced circulations on Mars, Geophys. Res. Lett., 33, L16201, doi:10.1029/2006GL026562.CrossRefGoogle Scholar
Michelangeli, D. V., Toon, O. B., Haberle, R. B., and Pollack, J. B. (1993) Numerical simulations of the formation and evolution of water ice clouds in the Martian atmosphere, Icarus, 100, 261285.CrossRefGoogle Scholar
Mischna, M. A., Kasting, J. F., Pavlov, A., and Freedman, R. (2000) Influence of carbon dioxide clouds on early Martian climate, Icarus, 145, 546554.Google Scholar
Möhlmann, D., Niemand, M., Formisano, V., Savijärvi, H., and Wolkenberg, P. (2009) Fog phenomena on Mars, Planet. Space Sci., 57, Issue 1415, 19871992.Google Scholar
Montmessin, F., Forget, F., Rannou, P., Cabane, M., and Haberle, R. M. (2004) Origin and role of water ice clouds in the Martian water cycle as inferred from a General Circulation Model, J. Geophys. Res., 105, 41094121.Google Scholar
Montmessin, F., Bertaux, J.-P., Quémerais, E., et al. (2006a) Subvisible CO2 clouds detected in the mesosphere of Mars, Icarus, 183, 403410.Google Scholar
Montmessin, F., Quémerais, E., Bertaux, J.-L., et al. (2006b) Stellar occultations at UV wavelengths by the SPICAM instrument: retrievals and analysis of Martian haze profiles, J. Geophys. Res., 111, E09S09, doi:10.1029/2005JE002662.CrossRefGoogle Scholar
Montmessin, F., Haberle, R. M., Forget, F., et al. (2007a) On the origin of perennial water ice at the south pole of Mars: a precession-controlled mechanism, J. Geophys. Res., 112, E08S17, doi:10.1029/2007JE002902.Google Scholar
Montmessin, F., Gondet, B., Bibring, J.-P., et al. (2007b) Hyperspectral imaging of convective CO2 ice clouds in the equatorial mesosphere of Mars, J. Geophys. Res., 112, E11S90, doi:10.1029/2007JE002944.Google Scholar
Moores, J. E., Komguem, L., Whiteway, J. A., et al. (2011) Observations of near-surface fog at the Phoenix Mars landing site, Geophys. Res. Lett., 38, L04203, doi:10.1029/2010GL046315.Google Scholar
Moores, J. E., Lemmon, M. T., Rafkin, S. C. R., et al. (2015) Atmospheric movies acquired at the Mars Science Laboratory landing site: cloud morphology, frequency and significance to the Gale Crater water cycle and Phoenix mission results, Adv. Space Res., 55, 22172238.Google Scholar
Murchie, S., Arvidson, R., Bedini, P., et al. (2007) Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO), J. Geophys. Res., 112, E05S03.Google Scholar
Navarro, T., Madeleine, J-B., Forget, F., et al. (2014) Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds, J. Geophys. Res., 119, 14791495, doi:10.1002/2013JE004550.Google Scholar
Nelli, S. M., Rennó, N. O., Murphy, J. R., Feldman, W. C., and Bougher, S. W. (2010) Simulations of atmospheric phenomena at the Phoenix landing site with the Ames general circulation model, J. Geophys. Res., 115, E00E21, doi:10.1029/2010JE003568.Google Scholar
Neukum, G., Jaumann, R., Behnke, T., et al. (2004) HRSC: the High Resolution Stereo Camera of Mars Express, in Mars Express: The Scientific Payload, Eur. Space Agency Spec. Publ., ESA-SP1240, 1735.Google Scholar
Neumann, G. A., Smith, D. E., and Zuber, M. T. (2003) Two years of clouds detected by the Mars Orbiter Laser Altimeter, J. Geophys. Res., 108, E4, 5023, doi:10.1029/2002JE001849.Google Scholar
Paige, D. A., and Ingersoll, A. P. (1985) Annual heat balance of Martian polar caps: Viking observations, Science, 228, 11601168.Google Scholar
Pathak, J., Michelangeli, D. V., Komguem, L., Whiteway, J., and Tamppari, L. K. (2008) Simulating Martian boundary layer water ice clouds and the lidar measurements for the Phoenix mission, J. Geophys. Res., 113, E00A05, doi:10.1029/2007JE002967.Google Scholar
Peale, S. J. (1973) Water and the Martian W cloud, Icarus, 18, 497501.Google Scholar
Pearl, J. C., Smith, M. D., Conrath, B. J., Bandfield, J. S., and Christensen, P. R. (2001) Observations of Martian ice clouds by the Mars Global Surveyor Thermal Emission Spectrometer: the first Mars year, J. Geophys. Res., 106, E6, 12325–12338.Google Scholar
Pettengill, G. H., and Ford, P. G. (2000) Winter clouds over the north Martian polar cap, Geophys. Res. Lett., 27, 609612.Google Scholar
Phebus, B. D., Johnson, A. V., Mar, B., et al. (2011) Water ice nucleation characteristics of JSC Mars-1 regolith simulant under simulated Martian atmospheric conditions, J. Geophys. Res., 116, E04009, doi:10.1029/2010JE003699.Google Scholar
Pickersgill, A. O., and Hunt, G. E. (1979) The formation of Martian lee waves generated by a crater, J. Geophys. Res., 84, 83178331.Google Scholar
Pickersgill, A. O., and Hunt, G. E. (1981) An examination of the formation of linear lee waves generated by giant Martian volcanoes, J. Atmos. Sci., 38, 4051.Google Scholar
Pollack, J. B., Kasting, J. F., Richardson, S. M., and Poliakoff, K. (1987) The case for a wet, warm climate on early Mars, Icarus, 71, 203224.Google Scholar
Richardson, M. I., Wilson, R. J., and Rodin, A. V. (2002) Water ice clouds in the Martian atmosphere: general circulation model experiments with a simple cloud scheme, J. Geophys. Res., 107(E9), doi:10.1029/2001JE001804.Google Scholar
Rodin, A. V., Korablev, O. I., and Moroz, V. I. (1997) Vertical distribution of water in near-equatorial troposphere of Mars: water vapor and clouds, Icarus, 125, 212229.Google Scholar
Rodin, A. V., Clancy, R. T., and Wilson, R. J. (1999) Dynamical properties of Mars water ice clouds and their dynamical interactions with atmospheric dust and radiation, Adv. Space. Res., 23, 15771585.Google Scholar
Rodin, A. V. Burlakov, A. V., Evdokimova, N. A., Fedorova, A. A., and Wilson, R. J. (2011) GCM simulation of the Mars water cycle with detailed cloud microphysics, EPSC-DPS joint meeting, October 2–7, Nantes, France.Google Scholar
Rossow, W. B. (1978) Cloud microphysics: analysis of the clouds of Earth, Venus, Mars, and Jupiter, Icarus, 36, 150.Google Scholar
Sassen, K. (2002) Cirrus clouds: a modern perspective, in Cirrus, ed. Lynch, D. K., Sassen, K., Starr, D. O’C., and Stephens, G., Oxford University Press, New York.Google Scholar
Savijärvi, H. (1999) A model study of the atmospheric boundary layer in the Mars Pathfinder Lander conditions, Q. J. R. Meteorol. Soc., 125, 483493.Google Scholar
Schofield, J. T., Barnes, J. R., Crisp, D., et al. (1997) The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment, Science, 278, 17521757.Google Scholar
Scholten, F., Hoffman, H., Määttänen, A., et al. (2010) Concatenation of HRSC colour and OMEGA data for the determination and 3D-parameterization of high-altitude CO2 clouds in the Martian atmosphere, Planet. Space Sci., 58, 12071214.Google Scholar
Sefton-Nash, E., Teanby, N. A., Montabone, L., et al. (2013), Climatology and first-order composition estimates of mesospheric clouds from Mars Climate Sounder limb spectra, Icarus, 222, 342356.Google Scholar
Smith, D. E., Zuber, M. T., Frey, H. V., et al. (2001) Mars Orbiter Laser Altimeter: experiment summary after the first year of global mapping of Mars, J. Geophys. Res., 106, E10, 2368923722.Google Scholar
Smith, I. B., Holt, J. W., Spiga, A., Howard, A. D., and Parker, G. (2013) The spiral troughs of Mars as cyclic steps, J. Geophys. Res., 118, 18351857, doi:10.1002/jgre.20142.Google Scholar
Smith, M. D. (2004) Interannual variability in TES atmospheric observations of Mars during 1999–2003, Icarus, 167, 148165.Google Scholar
Smith, M. D. (2009) THEMIS observations of Mars aerosol optical depth from 2002–2008, Icarus, 202, 444452.Google Scholar
Smith, M. D., Bandfield, J. L., and Christensen, P. R. (2000) Separation of atmospheric and surface spectral features in Mars Global Surveyor Thermal Emission Spectrometer (TES) spectra, J. Geopyhs. Res., 105, E4, 95899607.Google Scholar
Smith, M. D., Wolff, M. J., Clancy, R. T., Kleinböhl, A., and Murchie, S. L. (2013) Vertical distribution of dust and water ice aerosols from CRISM limb-geometry observations, J. Geophys. Res., 118, 321334, doi:10.1002/jgre.20047.Google Scholar
Smith, P. H., Tamppari, L., Arvidson, R. E., et al. (2008) Introduction to special section on the Phoenix mission: landing site characterization experiments, mission overviews, and expected science, J. Geophys. Res., 113, E00A18, doi:10.1029/2008JE003083.CrossRefGoogle Scholar
Slipher, E. C. (1962) The Photographic Story of Mars, Sky Publishing, Cambridge, MA.Google Scholar
Solomon, S., Qin, D., Manning, M., et al. (2007) Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, UK.Google Scholar
Spiga, A., González-Galindo, F., López-Valverde, M.-Á., and Forget, F. (2012) Gravity waves, cold pockets and CO2 clouds in the Martian mesosphere, Geophys. Res. Lett., 39, L02201, doi:10.1029/2011GL050343.Google Scholar
Sta. Maria, M. R. V., Rafkin, S. C. R., and Michaels, T. I. (2006) Numerical simulation of atmospheric bore waves on Mars, Icarus, 185, 383394.Google Scholar
Tamppari, L. K., Zurek, R. W., and Paige, D. A. (2000) Viking era water-ice clouds, J. Geophys. Res., 105, E2, 40874107.Google Scholar
Tamppari, L. K., Zurek, R. W., and Paige, D. A. (2003) Viking-era diurnal water-ice clouds, J. Geophys. Res., 108, E7, 5073, doi:10.1029/2002JE001911.Google Scholar
Tamppari, L. K., Smith, M. D., Kass, D. S., and Hale, A. S. (2008) Water-ice clouds and dust in the north polar region of Mars using MGS TES data, Planet. Space Sci., 56, 227245.Google Scholar
Tamppari, L. K., Bass, D., Cantor, B., et al. (2010) Phoenix and MRO coordinated atmospheric measurements, J. Geophys. Res., 115, E00E17, doi:10.1029/2009JE003415.Google Scholar
Thomas, P. C., James, P. B., Calvin, W. M., Haberle, R., and Malin, M. C. (2009) Residual south polar cap of Mars: stratigraphy, history, and implications of recent changes, Icarus, 203, 352375.Google Scholar
Titus, T. (2005) Mars polar cap edges tracked over 3 full Mars years, 36th Lunar and Planetary Science Conference, abstract no. 1993, League City, Texas, March 1418.Google Scholar
Tobie, G., Forget, F., and Lott, F. (2003) Numerical simulation of the winter polar wave clouds observed by Mars Global Surveyor Mars Orbiter Laser Altimeter, Icarus, 164, 3349.Google Scholar
Vehkamäki, H., Määttänen, A., Lauri, A., Napari, I., and Kulmala, M. (2007) The heterogeneous Zeldovich factor, Atmos. Chem. Phys., 7, 309313.Google Scholar
Vincendon, M., Pilorget, C., Gondet, B., Murchie, S., and Bibring, J.-P. (2011) New near-IR observations of mesospheric CO2 and H2O clouds on Mars, J. Geophys. Res., 116, E00J02, doi:10.1029/2011JE003827.Google Scholar
Wang, H., and Fisher, J. A. (2009) North polar frontal clouds and dust storms on Mars during spring and summer, Icarus, 204, 103113.Google Scholar
Wang, H., and Ingersoll, A. P. (2002) Martian clouds observed by Mars Global Surveyor Mars Orbiter Camera, J. Geophys. Res., 107, E105078, doi:10.1029/2001JE001815.Google Scholar
Whiteway, J., Cook, C., Gallagher, M., et al. (2004) Anatomy of cirrus clouds: results from the Emerald airborne campaigns, Geophys. Res. Lett., 31, L24102, doi: 10.1029/2004GL021201.Google Scholar
Whiteway, J., Daly, M., Carswell, A., et al. (2008) Lidar on the Phoenix mission to Mars, J. Geophys. Res., 113, E00A08, doi:10.1029/2007JE003002.Google Scholar
Whiteway, J. A., Komguem, L., Dickinson, C., et al. (2009) Mars water-ice clouds and precipitation, Science, 325, 6870, doi:10.1126/science.1172344.Google Scholar
Wilson, R. J. (2011a) Water ice clouds and thermal structure in the Martian tropics as revealed by Mars Climate Sounder, The Fourth International Workshop of the Mars Atmosphere: Modeling and Observation, Paris, France, February 8–11.Google Scholar
Wilson, R. J. (2011b) Dust cycle modeling with the GFDL Mars general circulation model, in The Fourth International Workshop of the Mars Atmosphere: Modeling and Observation, Paris, France, February 8–11.Google Scholar
Wilson, R. J., and Guzewich, S. D. (2014) Influence of water ice clouds on nighttime tropical temperature structure as seen by the Mars Climate Sounder, Geophys. Res. Lett., 41, 33753381, doi:10.1002/2014GL060086.Google Scholar
Wilson, R. J., and Richardson, M. I. (2000) The Martian atmosphere during the Viking mission, infrared measurements of atmospheric temperatures revisited, Icarus, 145, 555579.Google Scholar
Wilson, R. J., Neumann, G. A., and Smith, M. D. (2007) Diurnal variation and radiative influence of Martian water ice clouds, Geophys. Res. Lett., 34, L02710, doi:10.1029/2006GL027976.Google Scholar
Wilson, R. J., Lewis, S. R., Montabone, L., and Smith, M. D. (2008) Influence of water ice clouds on Martian tropical atmospheric temperatures, Geophys. Res. Lett., 35, doi:10.1029/2007GL032405.Google Scholar
Wolff, M.J. and Clancy, R. T. (2003) Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations, J. Geopyhs. Res., 108, E9, 122.Google Scholar
Wolff, M.J., Clancy, R. T., Cantor, B., and Madeleine, J.-B. (2011) Mapping water ice clouds (and ozone) with MRO/MARCI, The Fourth International Workshop of the Mars Atmosphere: Modeling and Observation, Paris, France, February 8–11.Google Scholar
Yang, P., Baum, B. A., Heymsfield, A., et al. (2003) Single-scattering properties of droxtals, J. Quan. Spec. Rad. Transf., 7980, 11591169.Google Scholar
Yiğit, E., Medvedev, A. S., and Hartogh, P. (2015) Gravity waves and high-altitude CO2 ice cloud formation in the Martian atmosphere, Geophys. Res. Lett., 10.1002/2015GL064275.Google Scholar
Zuber, M. T., Smith, D. E., Solomon, S. C., et al. (1998) Observations of the north polar region of Mars from the Mars Orbiter Laser Altimeter, Science, 282, 20532060, doi:10.1126/science.282.5396.2053.Google Scholar
Zurek, R. W. (1992) Comparative aspects of the climate of Mars: an introduction to the current atmosphere, in Mars, University of Arizona Press, 835933.Google Scholar
Zurek, R. W. Barnes, J. R. Haberle, R. M. et al. (1992) Dynamics of the atmosphere of Mars, Mars, University of Arizona Press, 835933.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×