Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T22:26:09.668Z Has data issue: false hasContentIssue false

9 - The Global Circulation

Published online by Cambridge University Press:  05 July 2017

Robert M. Haberle
Affiliation:
NASA Ames Research Center
R. Todd Clancy
Affiliation:
Space Science Institute, Boulder, Colorado
François Forget
Affiliation:
Laboratoire de Météorologie Dynamique, Paris
Michael D. Smith
Affiliation:
NASA-Goddard Space Flight Center
Richard W. Zurek
Affiliation:
NASA-Jet Propulsion Laboratory, California
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, M. (1997), Accurate analytic representations of solar time and seasons on Mars with applications to the Pathfinder/Surveyor missions, Geophys. Res. Lett., 24(16), 19671970, doi:10.1029/97GL01950.CrossRefGoogle Scholar
Allison, M., and McEwen, M. (2000), A post-Pathfinder evaluation of areocentric solar coordinates with improved timing recipes for Mars seasonal/diurnal climate studies, Planet. Space Sci., 48(23), 215235, doi:10.1016/S0032-0633(99)00092-6.Google Scholar
Anderson, D.L.T. (1976), The low-level jet as a western boundary current, Mon. Wea. Rev., 104, 907921, doi:10.1175/1520-0493(1976)104<0907:TLLJAA>2.0.CO;2.Google Scholar
Anderson, E., and Leovy, C.B. (1978), Mariner 9 television limb observations of dust and ice hazes on Mars, J. Atmos. Sci., 35, 723734, doi:10.1175/1520-0469(1978)035<0723:MTLOOD>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Andrews, D.G., and McIntyre, M.E. (1976), Planetary waves in horizontal and vertical shear: the generalized Eliassen–Palm relation and the mean zonal acceleration, J. Atmos. Sci., 33(11), doi:10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.Google Scholar
Andrews, D.G., Taylor, F.W., and McIntyre, M.E. (1987), The influence of atmospheric waves on the general circulation of the middle atmosphere [and discussion], Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 323(1575), 693705, doi:10.1098/rsta.1987.0115.Google Scholar
Angelats i Coll, M., Forget, F., López-Valverde, M.A., and González-Galindo, F. (2005), The first Mars thermospheric general circulation model: the Martian atmosphere from the ground to 240 km, Geophys. Res. Lett., 32, L04201, doi:10.1029/2004GL021368.Google Scholar
Banfield, D., Ingersoll, A.P., and Keppenne, C.L. (1995), A steady-state Kalman filter for assimilating data from a single polar orbiting satellite, J. Atmos. Sci., 52, 737753, doi:10.1175/1520-0469(1995)052<0737:ASSKFF>2.0.CO;2.Google Scholar
Banfield, D., Toigo, A.D., Ingersoll, A.P., and Paige, D.A. (1996), Martian weather correlation length scales, Icarus, 119(1), 130143, doi:10.1006/icar.1996.0006.Google Scholar
Banfield, D., Conrath, B.J., Pearl, J.C., Smith, M.D., and Christensen, P.R. (2000), Thermal tides and stationary waves on Mars as revealed by Mars Global Surveyor Thermal Emission Spectrometer, J. Geophys. Res., 105(E4), 9521, doi:10.1029/1999JE001161.CrossRefGoogle Scholar
Banfield, D., Conrath, B.J., Smith, M.D., Christensen, P.R., and Wilson, R.J. (2003), Forced waves in the Martian atmosphere from MGS TES nadir data, Icarus, 161(2), 319345, doi:10.1016/S0019-1035(02)00044-1.Google Scholar
Banfield, D., Conrath, B.J., Gierasch, P.J., Wilson, R.J., and Smith, M.D. (2004), Traveling waves in the Martian atmosphere from MGS TES nadir data, Icarus, 170(2), 365403, doi:10.1016/j.icarus.2004.03.015.Google Scholar
Barnes, J.R. (1980), Time spectral analysis of midlatitude disturbances in the Martian atmosphere, J. Atmos. Sci., 37, 20022015, doi:10.1175/1520-0469(1980)037<2002:TSAOMD>2.0.CO;2.Google Scholar
Barnes, J.R. (1981), Midlatitude disturbances in the Martian atmosphere: a second Mars year, J. Atmos. Sci., 38, 225234, doi:10.1175/1520-0469(1981)038<0225:MDITMA>2.0.CO;2.Google Scholar
Barnes, J.R. (1983), Baroclinic waves in the atmosphere of Mars: observations, linear instability, and finite-amplitude evolution, Ph.D Thesis, University of Washington, Seattle, Washington.Google Scholar
Barnes, J.R. (1984), Linear baroclinic instability in the Martian atmosphere, J. Atmos. Sci., 41, 15361550, doi:10.1175/1520-0469(1984)041<1536:LBIITM>2.0.CO;2.Google Scholar
Barnes, J.R. (1986), Finite-amplitude behavior of a single baroclinic wave with multiple vertical modes: effects of thermal damping, J. Atmos. Sci., 43, 5871, doi:10.1175/1520-0469(1986)043<0058:FABOAS>2.0.CO;2Google Scholar
Barnes, J.R. (1990), Possible effects of breaking gravity waves on the circulation of the middle atmosphere of Mars, J. Geophys. Res., 95(B2), 1401, doi:10.1029/JB095iB02p01401.Google Scholar
Barnes, J.R. (2001), Asynoptic fourier transform analyses of MGS TES data: transient baroclinic eddies, Bull. Am. Met. Soc., 33, 1067.Google Scholar
Barnes, J.R. (2003a), Planetary eddies in the Martian atmosphere: FFSM analysis of TES data, First Int. Workshop Mars Atmos. Model. Obs., Granada, Spain, http://www-mars.lmd.jussieu.fr/granada2003/.Google Scholar
Barnes, J.R. (2003b), Mars weather systems and maps: FFSM analyses of MGS TES temperature data, Sixth Int. Conf. Mars, Pasadena, California, www.lpi.usra.edu/meetings/sixthmars2003/abstractvolume.html.Google Scholar
Barnes, J.R. (2006), FFSM studies of transient eddies in the MGS TES temperature data, Second Int. Workshop Mars Atmos. Model. Obs., Granada, Spain, http://www-mars.lmd.jussieu.fr/granada2006/.Google Scholar
Barnes, J.R., and Haberle, R.M. (1996), The Martian zonal-mean circulation: angular momentum and potential vorticity structure in GCM simulations, J. Atmos. Sci., 53, 31433156, doi:10.1175/1520-0469(1996)053<3143:TMZMCA>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Barnes, J.R., and Hollingsworth, J.L. (1987), Dynamical modeling of a planetary wave mechanism for a Martian polar warming, Icarus, 71, 313334.CrossRefGoogle Scholar
Barnes, J.R., and Tyler, D. (2007), Winter weather on Mars: the unique southern hemisphere, in Seventh Int. Conf. Mars, Pasadena, California, www.lpi.usra.edu/meetings/7thmars2007/.Google Scholar
Barnes, J.R., Pollack, J.B., Haberle, R.M., et al. (1993), Mars atmospheric dynamics as simulated by the NASA Ames General Circulation Model: 2. Transient baroclinic eddies, J. Geophys. Res., 98(E2), 31253148, doi:10.1029/92JE02935.Google Scholar
Barnes, J.R., Walsh, T.D., and Murphy, J.R. (1996a), Transport timescales in the Martian atmosphere: general circulation model simulations, J. Geophys. Res., 101(E7), 16881, doi:10.1029/96JE00500.CrossRefGoogle Scholar
Barnes, J.R., Haberle, R.M., Pollack, J.B., Lee, H., and Schaeffer, J. (1996b), Mars atmospheric dynamics as simulated by the NASA Ames General Circulation Model: 3. Winter quasi-stationary eddies, J. Geophys. Res., 101, 1275312776.Google Scholar
Barnes, J.R., Rucker, M.S., and Tyler, D. (2014), Transient eddies in the atmosphere of Mars: the crucial importance of water clouds, in Eighth Int. Conf. Mars, Pasadena, California, www.hou.usra.edu/meetings/8thmars2014/.Google Scholar
Basu, S., Wilson, J., Richardson, M., and Ingersoll, A.P. (2006), Simulation of spontaneous and variable global dust storms with the GFDL Mars GCM, J. Geophys. Res., 111(E9), E09004, doi:10.1029/2005JE002660.Google Scholar
Benson, J.L., Kass, D.M., Kleinböhl, A., et al. (2010), Mars’ south polar hood as observed by the Mars Climate Sounder, J. Geophys. Res., 115(E12), E12015, doi:10.1029/2009JE003554.CrossRefGoogle Scholar
Blumsack, S.L. (1971), On the effects of topography on planetary atmospheric circulation, J. Atmos. Sci., 28, doi:10.1175/1520-0469(1971)028<1134:OTEOTO>2.0.CO;2.Google Scholar
Blumsack, S.L., and Gierasch, P.J. (1972), Mars: the effects of topography on baroclinic instability, J. Atmos. Sci., 29, doi:10.1175/1520-0469(1972)029<1081:MTEOTO>2.0.CO;2.Google Scholar
Blumsack, S.L., Gierasch, P.J., and Wessel, W.R. (1973), An analytical and numerical study of the Martian planetary boundary layer over slopes, J. Atmos. Sci., 30, doi:10.1175/1520-0469(1973)030<0066:AAANSO>2.0.CO;2.Google Scholar
Bougher, S.W., Engel, S., Hinson, D.P., and Forbes, J.M. (2001), Mars Global Surveyor radio science electron density profiles: neutral atmosphere implications, Geophys. Res. Lett., 28(16), 30913094, doi:10.1029/2001GL012884.CrossRefGoogle Scholar
Bridger, A.F.C., and Murphy, J.R. (1998), Mars’ surface pressure tides and their behavior during global dust storms, J. Geophys. Res., 103(E4), 8587, doi:10.1029/98JE00242.Google Scholar
Briggs, G.A., and Leovy, C.B. (1974), Mariner observations of the Mars north polar hood, Bull. Am. Meteorol. Soc., 55(4), doi:10.1175/1520-0477(1974)055<0278:MOOTMN>2.0.CO;2.Google Scholar
Cahoy, K.L., Hinson, D.P., and Tyler, G.L. (2007), Characterization of a semidiurnal eastward-propagating tide at high northern latitudes with Mars Global Surveyor electron density profiles, Geophys. Res. Lett., 34(15), L15201, doi:10.1029/2007GL030449.Google Scholar
Cavalié, T., Billebaud, F., Encrenaz, T., et al. (2008), Vertical temperature profile and mesospheric winds retrieval on Mars from CO millimeter observations, Astron. Astrophys., 489(2), 795809, doi:10.1051/0004-6361:200809815.Google Scholar
Chapman, S., and Lindzen, R.S. (1970), Atmospheric Tides – Thermal and Gravitational, Reidel, Dordrecht.Google Scholar
Charney, J.G. (1947), The dynamics of long waves in a baroclinc westerly current, J. Meteorol., 4(5), 136162, doi:10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2.Google Scholar
Christensen, P.R. (1988), Global albedo variations on Mars: implications for active aeolian transport, deposition, and erosion, J. Geophys. Res., 93(B7), 7611, doi:10.1029/JB093iB07p07611.Google Scholar
Christensen, P.R., Bandfield, J.L., Hamilton, V.E., et al. (2001), Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results, J. Geophys. Res., 106(E10), 23823, doi:10.1029/2000JE001370.Google Scholar
Christensen, P.R., Jakosky, B.M., Kieffer, H.H., et al. (2004), The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission, Space Sci. Rev., 110(1/2), 85130, doi:10.1023/B:SPAC.0000021008.16305.94.Google Scholar
Clancy, R.T., Sandor, B.J., Moriarty-Schieven, G.H., and Smith, M.D. (2006), Mesospheric winds and temperatures from JCMT sub-millimeter CO line observations during the 2003 and 2005 Mars oppositions, Second Int. Work. Mars Atmos. Model. Obs., Granada, Spain, http://www-mars.lmd.jussieu.fr/granada2006/.Google Scholar
Colaprete, A., Haberle, R.M., and Toon, O.B. (2003), Formation of convective carbon dioxide clouds near the south pole of Mars, J. Geophys. Res., 108(E7), 5081, doi:10.1029/2003JE002053.Google Scholar
Colaprete, A., Barnes, J.R., Haberle, R.M., et al. (2005), Albedo of the south pole on Mars determined by topographic forcing of atmosphere dynamics, Nature, 435(7039), 184188, doi:10.1038/nature03561.Google Scholar
Colaprete, A., Barnes, J.R., Haberle, R.M., and Montmessin, F. (2008), CO2 clouds, CAPE and convection on Mars: observations and general circulation modeling, Planet. Space Sci., 56(2), 150180, doi:10.1016/j.pss.2007.08.010.Google Scholar
Colburn, D.S., Pollack, J.B., and Haberle, R.M. (1988), Diurnal Variations in Optical Depth at Mars: Observations and Interpretations, NASA-TM-100057, A-88067, NAS 1.15:1000057.Google Scholar
Collins, M., Lewis, S.R., and Read, P.L. (1995), Regular and irregular baroclinic waves in a Martian general circulation model: a role for diurnal forcing?, Adv. Sp. Res., 16(6), 37, doi:10.1016/0273-1177(95)00243-8.CrossRefGoogle Scholar
Collins, M., Lewis, S.R., Read, P.L., and Hourdin, F. (1996), Baroclinic wave transitions in the Martian atmosphere, Icarus, 120(2), 344357, doi:10.1006/icar.1996.0055.Google Scholar
Collins, M., Lewis, S.R., and Read, P.L. (1997), Gravity wave drag in a global circulation model of the Martian atmosphere: parameterisation and validation, Adv. Sp. Res., 19(8), 12451254, doi:10.1016/S0273-1177(97)00277-9.Google Scholar
Conrath, B.J. (1975), Thermal structure of the Martian atmosphere during the dissipation of the dust storm of 1971, Icarus, 24(1), 3646, doi:10.1016/0019-1035(75)90156-6.Google Scholar
Conrath, B.J. (1976), Influence of planetary-scale topography on the diurnal thermal tide during the 1971 Martian dust storm, J. Atmos. Sci., 33, 24302439, doi:10.1175/1520-0469(1976)033<2430:IOPSTO>2.0.CO;2.Google Scholar
Conrath, B.J. (1981), Planetary-scale wave structure in the Martian atmosphere, Icarus, 48(2), 246255, doi:10.1016/0019-1035(81)90107-X.Google Scholar
Conrath, B.J., Pearl, J.C., Smith, M.D., et al. (2000), Mars Global Surveyor Thermal Emission Spectrometer (TES) observations: atmospheric temperatures during aerobraking and science phasing, J. Geophys. Res., 105(E4), 9509, doi:10.1029/1999JE001095.Google Scholar
Creasey, J.E., Forbes, J.M., and Hinson, D.P. (2006), Global and seasonal distribution of gravity wave activity in Mars’ lower atmosphere derived from MGS radio occultation data, Geophys. Res. Lett., 33(1), doi:10.1029/2005GL024037.Google Scholar
Crisp, D. (1990), Infrared radiative transfer in the dust-free Martian atmosphere, J. Geophys. Res., 95(B9), 14577, doi:10.1029/JB095iB09p14577.CrossRefGoogle Scholar
Eady, E.T. (1949), Long waves and cyclone waves, Tellus, 1, 3352, doi:10.1111/j.2153-3490.1949.tb01265.x.Google Scholar
Eckermann, S.D., Ma, J., and Zhu, X. (2011), Scale-dependent infrared radiative damping rates on Mars and their role in the deposition of gravity-wave momentum flux, Icarus, 211(1), 429442, doi:10.1016/j.icarus.2010.10.029.Google Scholar
Edmonds, R.M., Murphy, J., Schofield, J.T., and Heavens, N.G. (2014), Considerations on the Presence of Gravity Wave Activity During MCS Limb Staring Observations, Fifth Int. Work. Mars Atmos. Model. Obs., Oxford, UK, http://www-mars.lmd.jussieu.fr/oxford2014/.Google Scholar
Forbes, J.M. (2008), Troposphere–Thermosphere Coupling by Thermal Tides at Earth and Mars, AGU Spring Meeting Abstracts, 1, 1.Google Scholar
Forbes, J.M., and Hagan, M.E. (2000), Diurnal Kelvin wave in the atmosphere of Mars: towards an understanding of “stationary” density structures observed by the MGS accelerometer, Geophys. Res. Lett., 27(21), 35633566, doi:10.1029/2000GL011850.Google Scholar
Forbes, J.M., Bridger, A.F.C., Bougher, S.W., et al. (2002), Nonmigrating tides in the thermosphere of Mars, J. Geophys. Res., 107(E11), 5113, doi:10.1029/2001JE001582.Google Scholar
Forget, F., Hourdin, F., Fournier, R., et al. (1999), Improved general circulation models of the Martian atmosphere from the surface to above 80 km, J. Geophys. Res., 104(E10), 24155, doi:10.1029/1999JE001025.Google Scholar
Formisano, V., Grassi, D., Orfei, R., et al. (2004), The Planetary Fourier Spectrometer (PFS) for Mars Express, In Mars Express – The Scientific Payload, Ed. by Wilson, A., Sci. Coord. by A. Chicarro, ESA SP-1240, Noordwijk, Netherlands, ESA Publications Division, 7194, http://sci.esa.int/mars-express/34885-esa-sp-1240-mars-express-the-scientific-payload/.Google Scholar
Gadian, A.M. (1978), The dynamics of and the heat transfer by baroclinic eddies and large-scale stationary topographically forced long waves in the Martian atmosphere, Icarus, 33(3), 454465, doi:10.1016/0019-1035(78)90184-7.Google Scholar
Geissler, P.E. (2005), Three decades of Martian surface changes, J. Geophys. Res., 110(E2), E02001, doi:10.1029/2004JE002345.Google Scholar
Gierasch, P.J., and Goody, R. (1968), A study of the thermal and dynamical structure of the Martian lower atmosphere, Planet. Space Sci., 16(5), 615646, doi:10.1016/0032-0633(68)90102-5.Google Scholar
Gill, A.E. (1980), Some simple solutions for heat-induced tropical circulation, Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.Google Scholar
Gómez-Elvira, J., Armiens, C., Castaner, L., et al. (2012), REMS: the environmental sensor suite for the Mars Science Laboratory Rover, Space Sci. Rev., 170(14), 583640, doi:10.1007/s11214-012-9921-1.Google Scholar
Goody, R., and Belton, M.J.S. (1967), A discussion of Martian atmospheric dynamics, Planet. Space Sci., 15(2), 247256, doi:10.1016/0032-0633(67)90193-6.Google Scholar
Greeley, R., Lancaster, N., Lee, S., and Thomas, P. (1992), Martian aeolian processes, sediments, and features, In Mars, Kieffer, H.H., Jakosky, B.M., Snyder, C.W., and Mathews, M.S., Eds., University of Arizona Press, 730766.Google Scholar
Greeley, R., Skypeck, A., and Pollack, J.B. (1993), Martian aeolian features and deposits: comparisons with general circulation model results, J. Geophys. Res., 98(E2), 3183, doi:10.1029/92JE02580.Google Scholar
Greybush, S.J., Wilson, R.J., Hoffman, R.N., et al. (2012), Ensemble Kalman filter data assimilation of Thermal Emission Spectrometer temperature retrievals into a Mars GCM, J. Geophys. Res., 117(E11), E11008, doi:10.1029/2012JE004097.Google Scholar
Gunnlaugsson, H.P., Holstein-Rathlou, C., Merrison, J.P., et al. (2008), Telltale wind indicator for the Mars Phoenix Lander, J. Geophys. Res., 113, E00A04, doi:10.1029/2007JE003008.Google Scholar
Guzewich, S.D., Talaat, E.R., and Waugh, D.W. (2012), Observations of planetary waves and nonmigrating tides by the Mars Climate Sounder, J. Geophys. Res., 117(E3), E03010, doi:10.1029/2011JE003924.Google Scholar
Guzewich, S.D., Toigo, A.D., Richardson, M.I., et al. (2013), The impact of a realistic vertical dust distribution on the simulation of the Martian General Circulation, J. Geophys. Res. Planets, 118(5), 980993, doi:10.1002/jgre.20084.Google Scholar
Haberle, R.M., and Catling, D.C. (1996), A Micro-Meteorological mission for global network science on Mars: rationale and measurement requirements, Planet. Space Sci., 44(11), 13611383, doi:10.1016/S0032-0633(96)00056-6.Google Scholar
Haberle, R.M., Leovy, C.B., and Pollack, J.B. (1982), Some effects of global dust storms on the atmospheric circulation of Mars, Icarus, 50(2–3), 322367, doi:10.1016/0019-1035(82)90129-4.Google Scholar
Haberle, R.M., Houben, H.C., Hertenstein, R., and Herdtle, T. (1993a), A boundary-layer model for Mars: comparison with Viking Lander and entry data, J. Atmos. Sci., 50, 15441559, doi:10.1175/1520-0469(1993)050<1544:ABLMFM>2.0.CO;2.Google Scholar
Haberle, R.M., Pollack, J.B., Barnes, J.R., et al. (1993b), Mars atmospheric dynamics as simulated by the NASA Ames General Circulation Model: 1. The zonal-mean circulation, J. Geophys. Res., 98(E2), 3093, doi:10.1029/92JE02946.Google Scholar
Haberle, R.M., Houben, H.C., Barnes, J.R., and Young, R.E. (1997), A simplified three-dimensional model for Martian climate studies, J. Geophys. Res., 102(E4), 9051, doi:10.1029/97JE00383.Google Scholar
Haberle, R.M., Joshi, M.M., Murphy, J.R., et al. (1999), General circulation model simulations of the Mars Pathfinder atmospheric structure investigation/meteorology data, J. Geophys. Res., 104(E4), 8957, doi:10.1029/1998JE900040.Google Scholar
Haberle, R.M., Gomez-Elvira, J., de la Torre Juarez, M., et al. (2014), Preliminary interpretation of the REMS pressure data from the first 100 sols of the MSL mission, J. Geophys. Res. Planets, 119(3), 440453, doi:10.1002/2013JE004488.CrossRefGoogle Scholar
Hamilton, K., and Garcia, R.R. (1986), Theory and observations of the short-period normal mode oscillations of the atmosphere, J. Geophys. Res., 91(D11), 11867, doi:10.1029/JD091iD11p11867.Google Scholar
Hanel, R., Conrath, B.J., Hovis, W., et al. (1972), Investigation of the Martian environment by infrared spectroscopy on Mariner 9, Icarus, 17(2), 423442, doi:10.1016/0019-1035(72)90009-7.Google Scholar
Hartogh, P., Medvedev, A.S., Kuroda, T., et al. (2005), Description and climatology of a new general circulation model of the Martian atmosphere, J. Geophys. Res., 110(E11), E11008, doi:10.1029/2005JE002498.Google Scholar
Hartogh, P., Medvedev, A.S., and Jarchow, C. (2007), Middle atmosphere polar warmings on Mars: simulations and study on the validation with sub-millimeter observations, Planet. Space Sci., 55(9), 11031112, doi:10.1016/j.pss.2006.11.018.Google Scholar
Hayne, P.O., Paige, D.A., Heavens, N.G., and the Mars Climate Sounder Science Team (2014), The role of snowfall in forming the seasonal ice caps of Mars: models and constraints from the Mars Climate Sounder, Icarus, 231, 122130, doi:10.1016/j.icarus.2013.10.020.Google Scholar
Hayward, R.K., Fenton, L.K., and Titus, T.N. (2014), Mars Global Digital Dune Database (MGD3): global dune distribution and wind pattern observations, Icarus, 230, 3846, doi:10.1016/j.icarus.2013.04.011.Google Scholar
Heavens, N.G., Richardson, M.I., Lawson, W.G., et al. (2010), Convective instability in the Martian middle atmosphere, Icarus, 208(2), 574589, doi:10.1016/j.icarus.2010.03.023.Google Scholar
Hébrard, E., Listowski, C., Coll, P., et al. (2012), An aerodynamic roughness length map derived from extended Martian rock abundance data, J. Geophys. Res. Planets, 117(E4), doi:10.1029/2011JE003942.Google Scholar
Held, I.M., and Hou, A.Y. (1980), Nonlinear axially symmetric circulations in a nearly inviscid atmosphere, J. Atmos. Sci., 37(3), 515533, doi:10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2.Google Scholar
Held, I.M., Ting, M., and Wang, H. (2002), Northern winter stationary waves: theory and modeling, J. Climate, 15, 21252144, doi:10.1175/1520-0442(2002)015<2125:NWSWTA>2.0.CO;2.Google Scholar
Hess, S.L. (1950), Some aspects of the meteorology of Mars., J. Atmos. Sci., 7(1), doi:10.1175/1520-0469(1950)007<0001: SAOTMO>2.0.CO;2.Google Scholar
Hess, S.L., Henry, R.M., Leovy, C.B., Ryan, J.A., and Tillman, J.E. (1977), Meteorological results from the surface of Mars: Viking 1 and 2, J. Geophys. Res., 82(28), 45594574, doi:10.1029/JS082i028p04559.Google Scholar
Hinson, D.P. (2006), Radio occultation measurements of transient eddies in the northern hemisphere of Mars, J. Geophy. Res., 111, E05002, doi:10.1029/2005JE002612.Google Scholar
Hinson, D.P., and Wang, H. (2010), Further observations of regional dust storms and baroclinic eddies in the northern hemisphere of Mars, Icarus, 206, 290305, doi:10.1016/j.icarus.2009.08.019.Google Scholar
Hinson, D.P., and Wilson, R.J. (2002), Transient eddies in the southern hemisphere of Mars, Geophys. Res. Lett., 29(7), 1154, doi:10.1029/2001GL014103.Google Scholar
Hinson, D.P., and Wilson, R.J. (2004), Temperature inversions, thermal tides, and water ice clouds in the Martian tropics, J. Geophys. Res., 109, E01002, doi:10.1029/2003JE002129.Google Scholar
Hinson, D.P., Simpson, R.A., Twicken, J.D., Tyler, G.L., and Flasar, F.M. (1999), Initial results from radio occultation measurements with Mars Global Surveyor, J. Geophys. Res., 104(E11), 2699727012, doi:10.1029/1999JE001069.Google Scholar
Hinson, D.P., Tyler, G.L., Hollingsworth, J.L., and Wilson, R.J. (2001), Radio occultation measurements of forced atmospheric waves on Mars, J. Geophys. Res. Planets, 106(E1), 14631480, doi:10.1029/2000JE001291.Google Scholar
Hinson, D.P., Wilson, R.J., Smith, M.D., and Conrath, B.J. (2003), Stationary planetary waves in the atmosphere of Mars during southern winter, J. Geophys. Res., 108(E1), 5004, doi:10.1029/2002JE001949.Google Scholar
Hinson, D.P., Pätzold, M., Wilson, R.J., et al. (2008a), Radio occultation measurements and MGCM simulations of Kelvin waves on Mars, Icarus, 193(1), 125138, doi:10.1016/j.icarus.2007.09.009.Google Scholar
Hinson, D.P., Pätzold, M., Tellmann, S., Häusler, B., and Tyler, G.L. (2008b), The depth of the convective boundary layer on Mars, Icarus, 198(1), 5766, doi:10.1016/j.icarus.2008.07.003.Google Scholar
Hinson, D.P., Wang, H., and Smith, M.D. (2012), A multi-year survey of dynamics near the surface in the northern hemisphere of Mars: short-period baroclinic waves and dust storms, Icarus, 219(1), 307320, doi:10.1016/j.icarus.2012.03.001.Google Scholar
Hoffman, M.J., Greybush, S.J., John Wilson, R.J., et al. (2010), An ensemble Kalman filter data assimilation system for the Martian atmosphere: implementation and simulation experiments, Icarus, 209(2), 470481, doi:10.1016/j.icarus.2010.03.034.Google Scholar
Hollingsworth, J.L., and Barnes, J.R. (1996), Forced stationary planetary waves in Mars’s winter atmosphere., J. Atmos. Sci., 53, doi:10.1175/1520-0469(1996)053<0428:FSPWIM>2.0.CO;2.Google Scholar
Hollingsworth, J.L., and Kahre, M.A. (2010), Extratropical cyclones, frontal waves, and Mars dust: modeling and considerations, Geophys. Res. Lett., 37(22), doi:10.1029/2010GL044262.Google Scholar
Hollingsworth, J.L., Haberle, R.M., Barnes, J.R., et al. (1996), Orographic control of storm zones on Mars, Nature, 380(6573), 413416, doi:10.1038/380413a0.Google Scholar
Hollingsworth, J.L., Haberle, R.M., and Schaeffer, J. (1997), Seasonal variations of storm zones on Mars, Adv. Sp. Res., 19(8), 12371240, doi:10.1016/S0273-1177(97)00275-5.Google Scholar
Hollingsworth, J.L., Kahre, M.A., Haberle, R.M., and Montmessin, F. (2011), Radiatively-active aerosols within Mars’ atmosphere: implications on the weather and climate as simulated by the NASA ARC Mars GCM, in Fourth Int. Work. Mars Atmos. Model. Obs., Paris, France, http://www-mars.lmd.jussieu.fr/paris2011/.Google Scholar
Holstein-Rathlou, C., Gunnlaugsson, H.P., Iversen, J.J., et al. (2014), Mars wind as seen by the NASA Phoenix Lander telltale, in Eighth Int. Conf. Mars, www.hou.usra.edu/meetings/8thmars2014/.Google Scholar
Holton, J.R., and Hakim, G.J. (2013), An Introduction to Dynamic Meteorology, Fifth Ed., Academic Press.Google Scholar
Holton, J.R., Haynes, P.H., McIntyre, M.E., et al. (1995), Stratosphere-troposphere exchange, Rev. Geophys., 33(4), 403, doi:10.1029/95RG02097.Google Scholar
Hourdin, F., Forget, F., and Talagrand, O. (1995), The sensitivity of the Martian surface pressure and atmospheric mass budget to various parameters: a comparison between numerical simulations and Viking observations, J. Geophys. Res., 100(E3), 5501, doi:10.1029/94JE03079.Google Scholar
Hu, R., Cahoy, K., and Zuber, M.T. (2012), Mars atmospheric CO2 condensation above the north and south poles as revealed by radio occultation, climate sounder, and laser ranging observations, J. Geophys. Res., 117, E07002, doi:10.1029/2012JE004087.Google Scholar
Imamura, T., and Ogawa, T. (1995), Radiative damping of gravity waves in the terrestrial planetary atmospheres, Geophys. Res. Lett., 22(3), 267270, doi:10.1029/94GL02998.Google Scholar
Joshi, M.M., Lewis, S.R., Read, P.L., and Catling, D.C. (1994), Western boundary currents in the atmosphere of Mars, Nature, 367(6463), 548552, doi:10.1038/367548a0.Google Scholar
Joshi, M.M., Lawrence, B.N., and Lewis, S.R. (1995a), Gravity wave drag in three-dimensional atmospheric models of Mars, J. Geophys. Res., 100(E10), 21235, doi:10.1029/95JE02486.Google Scholar
Joshi, M.M., Lewis, S.R., Read, P.L., and Catling, D.C. (1995b), Western boundary currents in the Martian atmosphere: numerical simulations and observational evidence, J. Geophys. Res., 100(E3), 54855500, doi:10.1029/94JE02716.Google Scholar
Joshi, M.M., Haberle, R.M., Barnes, J.R., Murphy, J.R., and Schaeffer, J. (1997), Low-level jets in the NASA Ames Mars general circulation model, J. Geophys. Res., 102(E3), 6511, doi:10.1029/96JE03765.Google Scholar
Kahn, R. (1983), Some observational constraints on the global-scale wind systems of Mars, J. Geophys. Res., 88(A12), 10189, doi:10.1029/JA088iA12p10189.Google Scholar
Kahre, M.A., Haberle, R.M., Hollingsworth, J.L., and Wilson, R.J. (2014), Coupling the Mars dust and water cycles: investigating the role of clouds in controlling the vertical distribution of dust during N.H. summer, in Fifth Int. Work. Mars Atmos. Model. Obs., Oxford, UK, http://www-mars.lmd.jussieu.fr/oxford2014/.Google Scholar
Kavulich, M.J., Szunyogh, I., Gyarmati, G., and Wilson, R.J. (2013), Local dynamics of baroclinic waves in the Martian atmosphere, J. Atmos. Sci., 70, 34153447, doi:10.1175/JAS-D-12-0262.1.Google Scholar
Kieffer, H.H., Martin, T.Z., Peterfreund, A.R., et al. (1977), Thermal and albedo mapping of Mars during the Viking primary mission, J. Geophys. Res., 82(28), 42494291, doi:10.1029/JS082i028p04249.Google Scholar
Kleinböhl, A., Wilson, R.J., Kass, D., Schofield, J.T., and McCleese, D.J. (2013), The semidiurnal tide in the middle atmosphere of Mars, Geophys. Res. Lett., 40(10), 19521959, doi:10.1002/grl.50497.Google Scholar
Kondratyev, K.I., and Hunt, G.E. (1982), Weather and Climate on Planets, Pergamon Press.Google Scholar
Kuroda, T., Medvedev, A.S., Hartogh, P., and Takahashi, M. (2009), On forcing the winter polar warmings in the Martian middle atmosphere during dust storms, J. Met. Soc. Japan, 87(5), 913921, doi:10.2151/jmsj.87.913.Google Scholar
Lahoz, W., Khattatov, B., and Menard, R., Eds. (2010), Data Assimilation – Making Sense of Observations, Springer.Google Scholar
Lait, L.R., and Stanford, J.L. (1988), Applications of Asynoptic Space–Time Fourier Transform Methods to Scanning Satellite Measurements, J. Atmos. Sci., 45(24), 37843799, doi:10.1175/1520-0469(1988)045<3784:AOASFT>2.0.CO;2.Google Scholar
Lee, C., Lawson, W.G., Richardson, M.I., et al. (2009), Thermal tides in the Martian middle atmosphere as seen by the Mars Climate Sounder, J. Geophys. Res., 114, E03005, doi:10.1029/2008JE003285.CrossRefGoogle ScholarPubMed
Lee, C., Lawson, W.G., Richardson, M.I., et al. (2011), Demonstration of ensemble data assimilation for Mars using DART, MarsWRF, and radiance observations from MGS TES, J. Geophys. Res., 116, E11011, doi:10.1029/2011JE003815.Google Scholar
Lellouch, E., Rosenqvist, J., Goldstein, J.J., Bougher, S.W., and Paubert, G. (1991), First absolute wind measurements in the middle atmosphere of Mars, Astrophys. J., 383, 401, doi:10.1086/170797.Google Scholar
Leovy, C.B. (1969), Mars: theoretical aspects of meteorology, Appl. Opt., 8(7), 1279–86, doi:10.1364/AO.8.001279.Google Scholar
Leovy, C.B. (1981), Observations of Martian tides over two annual cycles, J. Atmos. Sci., 38, 3039, doi:10.1175/1520-0469(1981)038<0030:OOMTOT>2.0.CO;2.Google Scholar
Leovy, C.B., and Mintz, Y. (1969), Numerical simulation of the atmospheric circulation and climate of Mars, J. Atmos. Sci., 26(6), doi:10.1175/1520-0469(1969)026<1167:NSOTAC>2.0.CO;2.Google Scholar
Leovy, C.B., and Zurek, R.W. (1979), Thermal tides and Martian dust storms: direct evidence for coupling, J. Geophys. Res., 84(B6), 2956, doi:10.1029/JB084iB06p02956.Google Scholar
Leovy, C.B., Zurek, R.W., and Pollack, J.B. (1973), Mechanisms for Mars dust storms., J. Atmos. Sci., 30, doi:10.1175/1520-0469(1973)030<0749:MFMDS>2.0.CO;2.Google Scholar
Leovy, C.B., Tillman, J.E., Guest, W.R., and Barnes, J.R. (1985), Interannual variability of Martian weather, In Recent Advances in Planetary Meteorology, Cambridge Press, 6984.Google Scholar
Lewis, S.R., and Barker, P.R. (2005), Atmospheric tides in a Mars general circulation model with data assimilation, Adv. Sp. Res., 36(11), 21622168, doi:10.1016/j.asr.2005.05.122.Google Scholar
Lewis, S.R., and Read, P.L. (1995), An operational data assimilation scheme for the Martian atmosphere, Adv. Sp. Res., 16(6), 913, doi:10.1016/0273-1177(95)00244-9.Google Scholar
Lewis, S.R., and Read, P.L. (2003), Equatorial jets in the dusty Martian atmosphere, J. Geophys. Res., 108, E4, 5034, doi:10.1029/2002JE001933.Google Scholar
Lewis, S.R., Collins, M., Read, P.L., et al. (1999), A climate database for Mars, J. Geophys. Res., 104(E10), 24177, doi:10.1029/1999JE001024.Google Scholar
Lewis, S.R., Read, P.L., Conrath, B.J., Pearl, J.C., and Smith, M.D. (2007), Assimilation of thermal emission spectrometer atmospheric data during the Mars Global Surveyor aerobraking period, Icarus, 192(2), 327347, doi:10.1016/j.icarus.2007.08.009.Google Scholar
Lewis, S.R., Mulholland, D.P., Read, P.L., et al. (2016), The solsticial pause on Mars: 1. A planetary wave reanalysis, Icarus, 264, 456464, doi:10.1016/j.icarus.2015.08.039.Google Scholar
Lian, Y., Richardson, M.I., Newman, C.E., et al. (2012), The Ashima/MIT Mars GCM and argon in the Martian atmosphere, Icarus, 218(2), 10431070, doi:10.1016/j.icarus.2012.02.012.Google Scholar
Lindzen, R.S., and Hou, A. (1988), Hadley circulations for zonally averaged heating centered off the equator, J. Atmos. Sci., 45(17), 24162427, doi:10.1175/1520-0469(1988)045<2416:HCFZAH>2.0.CO;2.Google Scholar
Liu, J., Richardson, M.I., and Wilson, R.J. (2003), An assessment of the global, seasonal, and interannual spacecraft record of Martian climate in the thermal infrared, J. Geophys. Res., 108, E8, 5089, doi:10.1029/2002JE001921.Google Scholar
Määttänen, A., Montmessin, F., Gondet, B., et al. (2010), Mapping the mesospheric CO2 clouds on Mars: MEx/OMEGA and MEx/HRSC observations and challenges for atmospheric models, Icarus, 209(2), 452469, doi:10.1016/j.icarus.2010.05.017.Google Scholar
Määttänen, A., Gondet, B., Montmessin, F., et al. (2014), Mesospheric CO2 clouds on Mars: detection, properties and origin, Eighth Int. Conf. Mars., www.hou.usra.edu/meetings/8thmars2014/.Google Scholar
Madeleine, J.-B., Forget, F., Millour, E., Navarro, T., and Spiga, A. (2012), The influence of radiatively active water ice clouds on the Martian climate, Geophys. Res. Lett., 39(23), doi:10.1029/2012GL053564.Google Scholar
Magalhães, J.A. (1987), The Martian Hadley circulation: comparison of “viscous” model predictions to observations, Icarus, 70(3), 442468, doi:10.1016/0019-1035(87)90087-X.Google Scholar
Magalhães, J.A., Schofield, J.T., and Seiff, A. (1999), Results of the Mars Pathfinder atmospheric structure investigation, J. Geophys. Res., 104(E4), 8943, doi:10.1029/1998JE900041.Google Scholar
Martin, T.Z. (1981), Mean thermal and albedo behavior of the Mars surface and atmosphere over a Martian year, Icarus, 45(2), 427446, doi:10.1016/0019-1035(81)90045-2.Google Scholar
Martin, T.Z., and Kieffer, H.H. (1979), Thermal infrared properties of the Martian atmosphere: 2. The 15 µm band measurements, J. Geophys. Res., 84(B6), 2843, doi:10.1029/JB084iB06p02843.Google Scholar
McCleese, D.J., Schofield, J.T., Taylor, F.W., et al. (2008), Intense polar temperature inversion in the middle atmosphere on Mars, Nat. Geosci., 1(11), 745749, doi:10.1038/ngeo332.Google Scholar
McCleese, D.J., Heavens, N.G., Schofield, J.T., et al. (2010), Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: seasonal variations in zonal mean temperature, dust, and water ice aerosols, J. Geophys. Res., 115, E12016, doi:10.1029/2010JE003677.Google Scholar
McConnochie, T.H., Bell, J.F. III, Savransky, D., et al. (2010), THEMIS-VIS observations of clouds in the Martian mesosphere: altitudes, wind speeds, and decameter-scale morphology, Icarus, 210(2), 545565, doi:10.1016/j.icarus.2010.07.021.Google Scholar
McFarlane, N.A. (1987), The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere, J. Atmos. Sci., 44, 17751800.Google Scholar
Medvedev, A.S., and Hartogh, P. (2007), Winter polar warmings and the meridional transport on Mars simulated with a general circulation model, Icarus, 186(1), 97110, doi:10.1016/j.icarus.2006.08.020.Google Scholar
Medvedev, A.S., Yiğit, E., and Hartogh, P. (2011), Estimates of gravity wave drag on Mars: indication of a possible lower thermospheric wind reversal, Icarus, 211(1), 909912, doi:10.1016/j.icarus.2010.10.013.Google Scholar
Mellon, M.T., Jakosky, B.M., Kieffer, H.H., and Christensen, P.R. (2000), High-resolution thermal inertia mapping from the Mars Global Surveyor Thermal Emission Spectrometer, Icarus, 148(2), 437455, doi:10.1006/icar.2000.6503.Google Scholar
Mintz, Y. (1961), The general circulation of planetary atmospheres. In The Atmospheres of Mars and Venus, 107146.Google Scholar
Mischna, M.A., Lee, C., and Richardson, M.I. (2012), Development of a fast, accurate radiative transfer model for the Martian atmosphere, past and present, J. Geophys. Res., 117(E10), E10009, doi:10.1029/2012JE004110.Google Scholar
Mitchell, D.M., Montabone, L., Thomson, S., and Read, P.L. (2015), Polar vortices on Earth and Mars: a comparative study of the climatology and variability from reanalyses, Quart. J. Roy. Met. Soc., 141(687), 550562, doi:10.1002/qj.2376.Google Scholar
Miyoshi, Y., Forbes, J.M., and Moudden, Y. (2011), A new perspective on gravity waves in the Martian atmosphere: sources and features, J. Geophys. Res., 116(E9), E09009, doi:10.1029/2011JE003800.Google Scholar
Montabone, L., Lewis, S.R., Read, P.L., and Hinson, D.P. (2006), Validation of Martian meteorological data assimilation for MGS/TES using radio occultation measurements, Icarus, 185(1), 113132, doi:10.1016/j.icarus.2006.07.012.Google Scholar
Montmessin, F., Forget, F., Rannou, P., Cabane, M., and Haberle, R.M. (2004), Origin and role of water ice clouds in the Martian water cycle as inferred from a general circulation model, J. Geophys. Res., 109(E10), E10004, doi:10.1029/2004JE002284.Google Scholar
Montmessin, F., Gondet, B., Bibring, J.-P., et al. (2007), Hyperspectral imaging of convective CO2 ice clouds in the equatorial mesosphere of Mars, J. Geophys. Res., 112, E11590, doi:10.1029/2007JE002944.Google Scholar
Mooring, T.A., and Wilson, R.J. (2015), Transient eddies in the MACDA Mars reanalysis, J. Geophys. Res. Planets, 120, 16711696, doi:10.1002/2015JE004824.CrossRefGoogle Scholar
Moreno, R., Lellouch, E., Forget, F., et al. (2009), Wind measurements in Mars’ middle atmosphere: IRAM Plateau de Bure interferometric CO observations, Icarus, 201(2), 549563, doi:10.1016/j.icarus.2009.01.027.Google Scholar
Moudden, Y., and Forbes, J.M. (2014), Insight into the seasonal asymmetry of nonmigrating tides on Mars, Geophys. Res. Lett., 41(7), 26312636, doi:10.1002/2014GL059535.Google Scholar
Moudden, Y., and McConnell, J.C. (2005), A new model for multiscale modeling of the Martian atmosphere, GM3, J. Geophys. Res., 110(E4), E04001, doi:10.1029/2004JE002354.Google Scholar
Moudden, Y., and Forbes, J.M. (2008a), Effects of vertically propagating thermal tides on the mean structure and dynamics of Mars’ lower thermosphere, Geophys. Res. Lett., 35, L23805, doi:10.1029/2008GL036086.Google Scholar
Moudden, Y., and Forbes, J.M. (2008b), Topographic connections with density waves in Mars’ aerobraking regime, J. Geophys. Res., 113, E11009, doi:10.1029/2008JE003107.CrossRefGoogle Scholar
Mulholland, D.P., Lewis, S.R., Read, P.L., Madaleine, J.-B., and Forget, F. (2016), The solsticial pause on Mars: 2. Modeling and investigation of causes, Icarus, 264, 465477, doi:10.1016/j.icarus.2015.08.038.Google Scholar
Murphy, J.R., Leovy, C.B., and Tillman, J.E. (1990), Observations of Martian surface winds at the Viking Lander 1 Site, J. Geophys. Res., 95(B9), 14555, doi:10.1029/JB095iB09p14555.Google Scholar
Navarro, T., Forget, F., Millour, E., and Greybush, S.J. (2014), Detection of detached dust layers in the Martian atmosphere from their thermal signature using assimilation, Geophys. Res. Lett., 41, 66206626, doi:10.1002/1014GL061377.Google Scholar
Nayvelt, L., Gierasch, P.J., and Cook, K.H. (1997), Modeling and observations of Martian stationary waves, J. Atmos. Sci., 54, doi:10.1175/1520-0469(1997)054<0986:MAOOMS>2.0.CO;2.Google Scholar
Niver, D.S., and Hess, S.L. (1982), Band-pass filtering of one year of daily mean pressures on Mars, J. Geophys. Res., 87(B12), 10191, doi:10.1029/JB087iB12p10191.Google Scholar
Pätzold, M., Neubauer, F.M., Carone, L., et al. (2004), MaRS: Mars Express Orbiter Radio Science, In Mars Express – The Scientific Payload, Ed. by Wilson, A., Sci. Coord. by A. Chicarro, ESA SP-1240, Noordwijk, Netherlands, ESA Publications Division, 7194, http://sci.esa.int/mars-express/34885-esa-sp-1240-mars-express-the-scientific-payload/.Google Scholar
Pedlosky, J. (1979), Geophysical Fluid Dynamics, Springer.Google Scholar
Peixoto, J.P., and Oort, A.H. (1992), Physics of Climate, American Institute of Physics.Google Scholar
Pirraglia, J.A., and Conrath, B.J. (1974), Martian tidal pressure and wind field obtained from the Mariner 9 infrared spectroscopy experiment., J. Atmos. Sci., 31, doi:10.1175/1520-0469(1974)031<0318:MTPAWF>2.0.CO;2.Google Scholar
Pleskot, L.K., and Miner, E.D. (1981), Time variability of Martian bolometric albedo, Icarus, 45(1), 179201, doi:10.1016/0019-1035(81)90013-0.Google Scholar
Pollack, J.B., Colburn, D.S., Flasar, F.M., et al. (1979), Properties and effects of dust particles suspended in the Martian atmosphere, J. Geophys. Res., 84(B6), 2929, doi:10.1029/JB084iB06p02929.Google Scholar
Pollack, J.B., Leovy, C.B., Greiman, P.W., and Mintz, Y. (1981), A Martian general circulation experiment with large topography, J. Atmos. Sci., 38, 329, doi:10.1175/1520-0469(1981)038<0003: AMGCEW>2.0.CO;2.Google Scholar
Pollack, J.B., Haberle, R.M., Schaeffer, J., and Lee, H. (1990), Simulations of the general circulation of the Martian atmosphere: 1. Polar processes, J. Geophys. Res., 95(B2), 14471473, doi:10.1029/JB095iB02p01447.Google Scholar
Putzig, N., and Mellon, M.T. (2007), Apparent thermal inertia and the surface heterogeneity of Mars, Icarus, 191(1), 6894, doi:10.1016/j.icarus.2007.05.013.Google Scholar
Read, P.L., and Lewis, S.R. (2004), The Martian Climate Revisited – Atmosphere and Environment of a Desert Planet, Springer.Google Scholar
Richardson, M.I., and Wilson, R.J. (2002), A topographically forced asymmetry in the Martian circulation and climate., Nature, 416(6878), 298301, doi:10.1038/416298a.Google Scholar
Richardson, M.I., Toigo, A.D., and Newman, C.E. (2007), PlanetWRF: a general purpose, local to global numerical model for planetary atmospheric and climate dynamics, J. Geophys. Res., 112(E9), E09001, doi:10.1029/2006JE002825.Google Scholar
Rothman, L.S., Gordon, I.E., Babikov, Y., et al. (2013), The HITRAN2012 molecular spectroscopic database, J. Quant. Spectroscopy Rad. Transfer, 130, 450, doi:10.1016/j.jqsrt.2013.07.002.Google Scholar
Rucker, M.S. (2014), The effects of clouds on transient baroclinic eddies in a Mars general circulation model, Master’s Thesis, Oregon State University, Corvallis, Oregon.Google Scholar
Ryan, J.A., Henry, R.M., Hess, S.L., et al. (1978), Mars meteorology: three seasons at the surface, Geophys. Res. Lett., 5(8), 715718, doi:10.1029/GL005i008p00715.Google Scholar
Salby, M.L. (1982a), Sampling theory for asynoptic satellite observations. Part I: Space-time spectra, resolution, and aliasing, J. Atmos. Sci., 39(11), 25772600, doi:10.1175/1520-0469(1982)039<2577:STFASO>2.0.CO;2.Google Scholar
Salby, M.L. (1982b), Sampling theory for asynoptic satellite observations. Part II: Fast Fourier Synoptic Mapping, J. Atmos. Sci., 39(11), 26012614, doi:10.1175/1520-0469(1982)039<2601:STFASO>2.0.CO;2.Google Scholar
Santee, M.L., and Crisp, D. (1993), Thermal structure and dust loading of the Martian atmosphere during late southern summer: Mariner 9 revisited, J. Geophys. Res., 98(E2), 3261, doi:10.1029/92JE01896.Google Scholar
Santee, M.L., and Crisp, D. (1995), Diagnostic calculations of the circulation in the Martian atmosphere, J. Geophys. Res., 100(E3), 5465, doi:10.1029/94JE03207.Google Scholar
Sato, T.M., Fujiwara, H., Takahashi, Y.O., et al. (2011), Tidal variations in the Martian lower atmosphere inferred from Mars Express Planetary Fourier Spectrometer temperature data, Geophys. Res. Lett., 38(24), doi:10.1029/2011GL050348.Google Scholar
Savijärvi, H. (1995), Mars boundary layer modeling: diurnal moisture cycle and soil properties at the Viking Lander 1 site, Icarus, 117(1), 120127, doi:10.1006/icar.1995.1146.Google Scholar
Savijärvi, H., and Siili, T. (1993), The Martian slope winds and the nocturnal PBL jet, J. Atmos. Sci., 50, 7788, doi:10.1175/1520-0469(1993)050<0077:TMSWAT>2.0.CO;2.Google Scholar
Savijärvi, H., Crisp, D., and Harri, A.-M. (2005), Effects of CO2 and dust on present-day solar radiation and climate on Mars, Q. J. R. Meteorol. Soc., 131(611), 29072922, doi:10.1256/qj.04.09.Google Scholar
Schneider, E.K. (1983), Martian great dust storms: interpretive axially symmetric models, Icarus, 55(2), 302331, doi:10.1016/0019-1035(83)90084-2.Google Scholar
Schofield, J.T., Barnes, J.R., Crisp, D., et al. (1997), The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment., Science, 278(5344), 17521758, doi:10.1126/science.278.5344.1752.Google Scholar
Sharman, R.D., and Ryan, J.A. (1980), Mars atmosphere pressure periodicities from Viking observations, J. Atmos. Sci., 37, 19942001, doi:10.1175/1520-0469(1980)037<1994:MAPPFV>2.0.CO;2.Google Scholar
Shia, R.-L., Yung, Y.L., Allen, M., Zurek, R.W., and Crisp, D. (1989), Sensitivity study of advection and diffusion coefficients in a two-dimensional stratospheric model using excess carbon 14 data, J. Geophys. Res., 94(D15), 18467, doi:10.1029/JD094iD15p18467.Google Scholar
Smith, M.D. (2004), Interannual variability in TES atmospheric observations of Mars during 1999–2003, Icarus, 167(1), 148165, doi:10.1016/j.icarus.2003.09.010.Google Scholar
Smith, M.D. (2008), Spacecraft observations of the Martian atmosphere, Ann. Rev. Earth Planet. Sci., 36(1), 191219, doi:10.1146/annurev.earth.36.031207.124334.Google Scholar
Smith, M. D. (2009), THEMIS observations of Mars aerosol optical depth from 2002–2008, Icarus, 202(2), 444452, doi:10.1016/j.icarus.2009.03.027.Google Scholar
Smith, M.D., Pearl, J.C., Conrath, B.J., and Christensen, P.R. (2001a), One Martian year of atmospheric observations by the thermal emission spectrometer, Geophys. Res. Lett., 28(22), 42634266, doi:10.1029/2001GL013608.Google Scholar
Smith, M.D., Pearl, J.C., Conrath, B.J., and Christensen, P.R. (2001b), Thermal Emission Spectrometer results: Mars atmospheric thermal structure and aerosol distribution, J. Geophys. Res., 106(E10), 23929, doi:10.1029/2000JE001321.Google Scholar
Smith, M.D., Conrath, B.J., Pearl, J.C., and Christensen, P.R. (2002), Thermal Emission Spectrometer observations of Martian planet-encircling dust storm 2001A, Icarus, 157(1), 259263, doi:10.1006/icar.2001.6797.Google Scholar
Smith, M.D., Wolff, M.J., Spanovich, N., et al. (2006), One Martian year of atmospheric observations using MER Mini-TES, J. Geophys. Res., 111(E12), E12S13, doi:10.1029/2006JE002770.Google Scholar
Sonnabend, G., Sornig, M., Krötz, P.J., Schieder, R.T., and Fast, K.E. (2006), High spatial resolution mapping of Mars mesospheric zonal winds by infrared heterodyne spectroscopy of CO2, Geophys. Res. Lett., 33(18), L18201, doi:10.1029/2006GL026900.Google Scholar
Sonnabend, G., Sornig, M., Kroetz, P., and Stupar, D. (2012), Mars mesospheric zonal wind around northern spring equinox from infrared heterodyne observations of CO2, Icarus, 217(1), 315321, doi:10.1016/j.icarus.2011.11.009.Google Scholar
Spiga, A., Forget, F., Lewis, S.R., and Hinson, D.P. (2010), Structure and dynamics of the convective boundary layer on Mars as inferred from large-eddy simulations and remote-sensing measurements, Q. J. R. Meteorol. Soc., 136(647), 414428, doi:10.1002/qj.563.Google Scholar
Sprague, A.L., Boynton, W.V, Kerry, K.E., et al. (2004), Mars’ south polar Ar enhancement: a tracer for south polar seasonal meridional mixing, Science, 306(5700), 1364–7, doi:10.1126/science.1098496.Google Scholar
Sprague, A.L., Boynton, W.V., Kerry, K.E., et al. (2007), Mars’ atmospheric argon: tracer for understanding Martian atmospheric circulation and dynamics, J. Geophys. Res., 112(E3), E03S02, doi:10.1029/2005JE002597.Google Scholar
Sprague, A.L., Boynton, W.V., Forget, F., et al. (2012), Interannual similarity and variation in seasonal circulation of Mars’ atmospheric Ar as seen by the Gamma Ray Spectrometer on Mars Odyssey, J. Geophys. Res. Planets, 117(E4), doi:10.1029/2011JE003873.Google Scholar
Steele, L.J., Lewis, S.R., Patel, M.R., et al. (2014a), The seasonal cycle of water vapor on Mars from assimilation of Thermal Emission Spectrometer data, Icarus, 237, 97115, doi:10.1016/j.icarus.2014.04.017.Google Scholar
Steele, L.J., Lewis, S.R., and Patel, M.R. (2014b), The radiative impact of water ice clouds from a reanalysis of Mars Climate Sounder data, Geophys. Res. Lett., 41, 44714478, doi:10.1002/2014GL060235.Google Scholar
Sullivan, R., Greeley, R., Kraft, M., et al. (2000), Results of the Imager for Mars Pathfinder windsock experiment, J. Geophys. Res., 105(E10), 24547, doi:10.1029/1999JE001234.Google Scholar
Sutton, J.L., Levoy, C.B., and Tillman, J.E. (1978), Diurnal variations of the Martian surface layer meteorological parameters during the first 45 sols at two Viking Lander sites, J. Atmos. Sci., 35, 23462355, doi:10.1175/1520-0469(1978)035<2346:DVOTMS>2.0.CO;2.Google Scholar
Szwast, M.A., Richardson, M.I., and Vasavada, A.R. (2006), Surface dust redistribution on Mars as observed by the Mars Global Surveyor and Viking Orbiters, J. Geoph. Res., 111(E11), E11008, doi:10.1029/2005JE002485.Google Scholar
Takahashi, Y.O., Fujiwara, H., Fukunishi, H., et al. (2003), Topographically induced north–south asymmetry of the meridional circulation in the Martian atmosphere, J. Geophys. Res., 108(E3), 5018, doi:10.1029/2001JE001638.Google Scholar
Takahashi, Y.O., Fujiwara, H., and Fukunishi, H. (2006), Vertical and latitudinal structure of the migrating diurnal tide in the Martian atmosphere: numerical investigations, J. Geophys. Res., 111(E1), E01003, doi:10.1029/2005JE002543.Google Scholar
Tellmann, S., Pätzold, M., Häusler, B., Hinson, D.P., and Tyler, G.L. (2013), The structure of Mars lower atmosphere from Mars Express Radio Science (MaRS) occultation measurements, J. Geophys. Res. Planets, 118(2), 306320, doi:10.1002/jgre.20058.Google Scholar
Théodore, B., Lellouch, E., Chassefière, E., and Hauchecorne, A. (1993), Solstitial temperature inversions in the Martian middle atmosphere: observational clues and 2-D modeling, Icarus, 105(2), 512528, doi:10.1006/icar.1993.1145.CrossRefGoogle Scholar
Thomas, P., Veverka, J., Lee, S., and Bloom, A. (1981), Classification of wind streaks on Mars, Icarus, 45(1), 124153, doi:10.1016/0019-1035(81)90010-5.Google Scholar
Tillman, J.E. (1988), Mars global atmospheric oscillations: annually synchronized, transient normal-mode oscillations and the triggering of global dust storms, J. Geophys. Res., 93(D8), 9433, doi:10.1029/JD093iD08p09433.Google Scholar
Tillman, J.E., Henry, R.M., and Hess, S.L. (1979), Frontal systems during passage of the Martian north polar hood over the Viking Lander 2 site prior to the first 1977 dust storm, J. Geophys. Res., 84(B6), 2947, doi:10.1029/JB084iB06p02947.Google Scholar
Tillman, J.E., Johnson, N.C., Guttorp, P., and Percival, D.B. (1993), The Martian annual atmospheric pressure cycle: years without great dust storms, J. Geophys. Res., 98(E6), 10963, doi:10.1029/93JE01084.Google Scholar
Toigo, A.D., Richardson, M.I., Wilson, R.J., Wang, H., and Ingersoll, A.P. (2002), A first look at dust lifting and dust storms near the south pole of Mars with a mesoscale model, J. Geophys. Res., 107(E7), doi:10.1029/2011JE001592.Google Scholar
Tyler, D., and Barnes, J.R. (2005), A mesoscale model study of summertime atmospheric circulations in the north polar region of Mars, J. Geophys. Res., 110(E6), E06007, doi:10.1029/2004JE002356.Google Scholar
Tyler, D., and Barnes, J.R. (2013), Mesoscale modeling of the circulation in the Gale Crater region: an investigation into the complex forcing of convective boundary layer depths, Mars, 8, 5877, doi:10.1555/mars.2013.0003.Google Scholar
Tyler, D., and Barnes, J.R. (2014), Atmospheric mesoscale modeling of water and clouds during northern summer on Mars, Icarus, 237, 388414, doi:10.1016/j.icarus.2014.04.020.Google Scholar
Tyler, D., and Barnes, J.R. (2015), Convergent crater circulations on Mars: influence on the surface pressure cycle and the depth of the convective boundary layer, Geophys. Res. Lett., 42(18), 73437350, doi:10.1002/2015GL064957.Google Scholar
Wang, H. (2007), Dust storms originating in the northern hemisphere during the third mapping year of Mars Global Surveyor, Icarus, 189(2), 325343, doi:10.1016/j.icarus.2007.01.014.Google Scholar
Wang, H., and Ingersoll, A.P. (2003), Cloud-tracked winds for the first Mars Global Surveyor mapping year, J. Geophys. Res., 108(E9), 5110, doi:10.1029/2003JE002107.Google Scholar
Wang, H., and Richardson, M.I. (2015), The origin, evolution, and trajectory of large dust storms on Mars during Mars Years 24–30 (1999–2011), Icarus, 251, 112127, doi:10.1016/j.icarus.2013.10.033.Google Scholar
Wang, H., Richardson, M.I., Wilson, R.J., et al. (2003), Cyclones, tides, and the origin of a cross-equatorial dust storm on Mars, Geophys. Res. Lett., 30(9), 1488, doi:10.1029/2002GL016828.Google Scholar
Wang, H., Zurek, R.W., and Richardson, M.I. (2005), Relationship between frontal dust storms and transient eddy activity in the northern hemisphere of Mars as observed by Mars Global Surveyor, J. Geophys. Res., 110(E7), E07005, doi:10.1029/2005JE002423.Google Scholar
Wang, H., Toigo, A.D., and Richardson, M.I. (2011), Curvilinear features in the southern hemisphere observed by Mars Global Surveyor Mars Orbiter Camera, Icarus, 215(1), 242252, doi:10.1016/j.icarus.2011.06.029.Google Scholar
Wang, H., Richardson, M.I., Toigo, A.D., and Newman, C.E. (2013), Zonal wavenumber three traveling waves in the northern hemisphere of Mars simulated with a general circulation model, Icarus, 223(2), 654676, doi:10.1016/j.icarus.2013.01.004.Google Scholar
Webster, P.J. (1977), The low-latitude circulation of Mars, Icarus, 30(4), 626649, doi:10.1016/0019-1035(77)90086-0.Google Scholar
Wilson, R.J. (1997), A general circulation model simulation of the Martian polar warming, Geophys. Res. Lett., 24(2), 123126, doi:10.1029/96GL03814.Google Scholar
Wilson, R.J. (2000), Evidence for diurnal period Kelvin waves in the Martian atmosphere from Mars Global Surveyor TES data, Geophys. Res. Lett., 27(23), 38893892, doi:10.1029/2000GL012028.Google Scholar
Wilson, R.J. (2002), Evidence for nonmigrating thermal tides in the Mars upper atmosphere from the Mars Global Surveyor Accelerometer Experiment, Geophys. Res. Lett., 29(7), 1120, doi:10.1029/2001GL013975.Google Scholar
Wilson, R.J. (2011), Water ice clouds and thermal structure in the Martian tropics as revealed by Mars Climate Sounder, in Fourth Int. Workshop Mars Atmos. Model. Obs., Paris, France, http://www-mars.lmd.jussieu.fr/paris2011/.Google Scholar
Wilson, R.J. (2012a), The role of thermal tides in the Martian dust cycle, in Eur. Planet. Sci. Congr., Madrid, Spain, http://meetingorganizer.copernicus.org/EPSC2012/EPSC2012-798-1.pdf.Google Scholar
Wilson, R.J. (2012b), Thermal tides as revealed by Mars Climate Sounder, in Eur. Planet. Sci. Congr., Madrid, Spain, http://meetingorganizer.copernicus.org/EPSC2012/EPSC2012-825-1.pdf.Google Scholar
Wilson, R.J. (2015), The impact of planetary-scale thermal forcing and small-scale topography on the diurnal cycle of Martian surface pressure, Abstract P22A-07, presented at 2015 Fall Meeting, AGU, San Francisco, CA, 14–18 December, http://abstractsearch.agu.org/meetings/2015/FM/P22A-07.html.Google Scholar
Wilson, R.J., and Guzewich, S.D. (2014), Influence of water ice clouds on nighttime tropical temperature structure as seen by the Mars Climate Sounder, Geophys. Res. Lett., 41(10), 33753381, doi:10.1002/2014GL060086.Google Scholar
Wilson, R.J., and Hamilton, K. (1996), Comprehensive model simulation of thermal tides in the Martian atmosphere., J. Atmos. Sci., 53, doi:10.1175/1520-0469(1996)053<1290:CMSOTT>2.0.CO;2.Google Scholar
Wilson, R.J., and Richardson, M.I. (1999), Comparison of Mars GCM dust storm simulations with Viking mission observations, Fifth Int. Conf. Mars, Pasadena, California, www.lpi.usra.edu/meetings/5thMars99/pdf/sessguid.pdf.Google Scholar
Wilson, R.J., and Richardson, M.I. (2000), The Martian atmosphere during the Viking mission. 1: Infrared measurements of atmospheric temperatures revisited, Icarus, 145(2), 555579, doi:10.1006/icar.2000.6378.Google Scholar
Wilson, R. J., Banfield, D., Conrath, B.J., and Smith, M.D. (2002), Traveling waves in the northern hemisphere of Mars, Geophys. Res. Lett., 29(14), 1684, doi:10.1029/2002GL014866.Google Scholar
Wilson, R.J., Hinson, D.P., and Smith, M.D. (2006), GCM simulations of transient eddies and frontal systems in the Martian atmosphere, Second Int. Work. Mars Atmos. Model. Obs., Granada, Spain, http://www-mars.lmd.jussieu.fr/granada2006/.Google Scholar
Wilson, R.J., Lewis, S.R., and Montabone, L. (2007), Thermal tides in an assimilation of three years of Thermal Emission Spectrometer data from Mars Global Surveyor, Seventh Int. Conf. Mars, Pasadena, California, www.lpi.usra.edu/meetings/7thmars2007/.Google Scholar
Wilson, R.J., Haberle, R.M., Noble, J., et al. (2008a), Simulation of the 2001 planet-encircling dust storm with the NASA/NOAA Mars general circulation model, Third Int. Work. Mars Atmos. Model. Obs., Williamsburg, Virginia, www.lpi.usra.edu/meetings/modeling2008/.Google Scholar
Wilson, R.J., Lewis, S.R., Montabone, L., and Smith, M.D. (2008b), Influence of water ice clouds on Martian tropical atmospheric temperatures, Geophys. Res. Lett., 35(7), doi:10.1029/2007GL032405.Google Scholar
Wilson, R.J., Millour, E., Navarro, T., Forget, F., and Kahre, M. (2014a), GCM simulations of aphelion season tropical cloud and temperature structure, Fifth Int. Work. Mars Atmos. Model. Obs., Oxford, UK, http://www-mars.lmd.jussieu.fr/oxford2014/.Google Scholar
Wilson, R.J., Guzewich, S.D., and Kleinböhl, A. (2014b), New progress and insights on thermal tides and their forcing from MCS and modeling, Eighth Int. Conf. Mars, Pasadena, California, www.hou.usra.edu/meetings/8thmars2014/.Google Scholar
Withers, P., Bougher, S.W., and Keating, G.J. (2003), The effects of topographically-controlled thermal tides in the Martian upper atmosphere as seen by the MGS accelerometer, Icarus, 164(1), 1432, doi:10.1016/S0019-1035(03)00135-0.Google Scholar
Withers, P., Pratt, R., Bertaux, J.-L., and Montmessin, F. (2011), Observations of thermal tides in the middle atmosphere of Mars by the SPICAM instrument, J. Geophys. Res., 116(E11), E11005, doi:10.1029/2011JE003847.Google Scholar
Wolkenberg, P.M., and Wilson, R.J. (2014), Mars Climate Sounder observations of wave structure in the north polar middle atmosphere of Mars during the summer season, Eighth Int. Conf. Mars, Pasadena, California, www.hou.usra.edu/meetings/8thmars2014/.Google Scholar
Zalucha, A.M., Plumb, R.A., and Wilson, R.J. (2010), An analysis of the effect of topography on the Martian Hadley cells, J. Atmos. Sci., 67(3), 673693, doi:10.1175/2009JAS3130.1.Google Scholar
Zhang, K.Q., Ingersoll, A.P., Kass, D.M., et al. (2001), Assimilation of Mars Global Surveyor atmospheric temperature data into a general circulation model, J. Geophys. Res., 106(E12), 32863, doi:10.1029/2000JE001330.Google Scholar
Zurek, R.W. (1976), Diurnal tide in the Martian atmosphere, J. Atmos. Sci., 33, 321337, doi:10.1175/1520-0469(1976)033<0321:DTITMA>2.0.CO;2.Google Scholar
Zurek, R.W. (1981), Inference of dust opacities for the 1977 Martian great dust storms from Viking Lander 1 pressure data, Icarus, 45(1), 202215, doi:10.1016/0019-1035(81)90014-2.Google Scholar
Zurek, R.W. (1986), Atmospheric tidal forcing of the zonal-mean circulation: the Martian dusty atmosphere, J. Atmos. Sci., 43, 652670, doi:10.1175/1520-0469(1986)043<0652:ATFOTZ>2.0.CO;2.Google Scholar
Zurek, R.W. (1988), Free and forced modes in the Martian atmosphere, J. Geophys. Res., 93(D8), 9452, doi:10.1029/JD093iD08p09452.Google Scholar
Zurek, R.W., and Haberle, R.M. (1988), Zonally symmetric response to atmospheric tidal forcing in the dusty Martian atmosphere, J. Atmos. Sci., 45, 24692485, doi:10.1175/1520-0469(1988)045<2469:ZSRTAT>2.0.CO;2.Google Scholar
Zurek, R.W., and Leovy, C.B. (1981), Thermal tides in the dusty Martian atmosphere: a verification of theory, Science, 213(4506), 437439, doi:10.1126/science.213.4506.437.Google Scholar
Zurek, R.W., Barnes, J.R., Haberle, R.M., et al. (1992), Dynamics of the atmosphere of Mars, In Mars, Kieffer, H.H., Jakosky, B.M., Snyder, C.W., and Mathews, M.S., Eds., University of Arizona Press, 835933.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×