Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-18T17:11:10.864Z Has data issue: false hasContentIssue false

12 - Hydra

Evolutionary and Biological Mechanisms for Non-Senescence

from Part II - Senescence in Animals

Published online by Cambridge University Press:  16 March 2017

Richard P. Shefferson
Affiliation:
University of Tokyo
Owen R. Jones
Affiliation:
University of Southern Denmark
Roberto Salguero-Gómez
Affiliation:
University of Sheffield
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abele, D., Brey, T. & Philipp, E. (2009). Bivalve models of aging and the determination of molluscan lifespans. Experimental Gerontology, 44, 307–15.CrossRefGoogle ScholarPubMed
Adami, C. (2002). What is complexity? BioEssays, 24, 1085–94.CrossRefGoogle ScholarPubMed
Ally, D., Ritland, K. & Otto, S. P. (2010). Aging in a long-lived clonal tree. PLoS Biology, 8(8): e1000454.CrossRefGoogle Scholar
Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology, 141, 391–6.CrossRefGoogle ScholarPubMed
Augustin, R., Fraune, S. & Bosch, T. C. G. (2010). How Hydra senses and destroys microbes. Seminars in Immunology, 22, 54–8.CrossRefGoogle ScholarPubMed
Bell, G. & Wolfe, L. M. (1985). Sexual and asexual reproduction in a natural population of Hydra pseudoligactis. Canadian Journal of Zoology, 63, 851–6.CrossRefGoogle Scholar
Blanpain, C., Mohrin, M., Sotiropoulou, P. A. & Passegue, E. (2011). DNA-damage response in tissue-specific and cancer stem cells. Cell Stem Cell, 8, 1629.CrossRefGoogle ScholarPubMed
Bode, H., Berking, S., David, C. N., et al. (1973). Quantitative analysis of cell types during growth and morphogenesis in hydra. Wilhelm Roux’ Archiv fuer Entwicklungsmechanik der Organismen, 171, 269–85.Google ScholarPubMed
Bode, H. R. (1996). The interstitial cell lineage of Hydra: a stem cell system that arose early in evolution. Journal of Cell Science, 109, 1155–64.CrossRefGoogle ScholarPubMed
Bosch, T. C. G. (2012). Understanding complex host-microbe interactions in Hydra. Gut Microbes, 3, 345–51.CrossRefGoogle ScholarPubMed
Bosch, T. C. G., Anton-Erxleben, F., Hemmrich, G. & Khalturin, K. (2010). The Hydra polyp: nothing but an active stem cell community. Development Growth and Differentiation, 52, 1525.CrossRefGoogle ScholarPubMed
Bosch, T. C. G. & David, C. N. (1984). Growth-regulation in Hydra: relationship between epithelial-cell cycle length and growth-rate. Developmental Biology, 104, 161–71.CrossRefGoogle ScholarPubMed
Branzei, D. & Foiani, M. (2008). Regulation of DNA repair throughout the cell cycle. Nature Reviews Molecular Cell Biology, 9, 297308.CrossRefGoogle ScholarPubMed
Brien, P. (1953). La Perennité Somatique. Biological Reviews of the Cambridge Philosophical Society, 28, 308–49.CrossRefGoogle Scholar
Brock, M. A. (1974). Growth, developmental, and longevity rhythms in Campanularia flexuosa. American Journal of Zoology, 14, 757–71.Google Scholar
Buss, L. W. (1985). The uniqueness of the individual revisited. In Population Biology and Evolution of Clonal Organisms, ed. Jackson, J. B. C., Buss, L. W. & Cook, R. E. (pp. 467506 ) (New Haven, CT: Yale University Press).Google Scholar
Campbell, R. D. (1967). Tissue dynamics of steady state growth in Hydra littoralis: I. Patterns of cell division. Developmental Biology, 15, 487.CrossRefGoogle ScholarPubMed
Campbell, R. D. (1987). A new species of Hydra (Cnidaria, Hydrozoa) from North America with comments on species clusters within the genus. Zoological Journal of the Linnean Society, 91, 253–63.CrossRefGoogle Scholar
Caswell, H. (1985). The evolutionary demography of clonal reproduction. In Population Biology and Evolution of Clonal Organisms, ed. Jackson, J. B. C., Buss, L. W. & Cook, R. E. (pp. 187224) (New Haven, CT: Yale University Press).Google Scholar
Changizi, M., Mcdannald, M. & Widders, D. (2002). Scaling of differentiation in networks: nervous systems, organisms, ant colonies, ecosystems, businesses, universities, cities, electronic circuits, and Legos. Journal of Theoretical Biology, 218, 215–37.CrossRefGoogle ScholarPubMed
Chera, S., Buzgariu, W., Ghila, L. & Galliot, B. (2009). Autophagy in Hydra: a response to starvation and stress in early animal evolution. Biochimica et Biophysica Acta, 1793(9), 1432–43.Google ScholarPubMed
Congdon, J. D., Nagle, R. D., Kinney, O. M., et al. (2003). Testing hypotheses of aging in long-lived painted turtles (Chrysemys picta). Experimental Gerontology, 38, 765–72.CrossRefGoogle ScholarPubMed
Cuker, B. E. & Mozley, S. C. (1981). Summer population fluctuations, feeding, and growth of Hydra in an arctic lake. Limnology and Oceanography, 26, 697708.CrossRefGoogle Scholar
Damman, H. & Cain, M. L. (1998). Population growth and viability analyses of the clonal woodland herb, Asarum canadense. Journal of Ecology, 86, 1326.CrossRefGoogle Scholar
Dańko, M. J., Kozłowski, J. & Schaible, R. (2015). Unraveling the non-senescence phenomenon in Hydra. Journal of Theoretical Biology, 382, 137–49.CrossRefGoogle ScholarPubMed
De Witte, L. C., Scherrer, D. & Stoecklin, J. (2011). Genet longevity and population age structure of the clonal pioneer species Geum reptans based on demographic field data and projection matrix modelling. Preslia, 83, 371–86.Google Scholar
De Witte, L. C. & Stoecklin, J. (2010). Longevity of clonal plants: why it matters and how to measure it. Annals of Botany, 106, 859–70.CrossRefGoogle Scholar
Ender, A. (1997). Untersuchungen zur Evolutionsgenetik des athekaten Hydrozoons Eleutheria dichotoma (Quatrefages 1842). PhD dissertation, Frankfurt am Main, University, Germany.Google Scholar
Fraune, S. & Bosch, T. C. G. (2007). Long-term maintenance of species-specific bacterial microbiota in the basal metazoan Hydra. Proceedings of the National Academy of Sciences of the United States of America, 104, 13146–51.Google ScholarPubMed
Gierer, A., Bode, H., Berking, S., et al. (1972). Regeneration of hydra from reaggregated cells. Nature-New Biology, 239, 98.CrossRefGoogle ScholarPubMed
Grassi, M., Tardent, R. & Tardent, P. (1995). Quantitative data about gametogenesis and embryonic development in Hydra vulgaris Pall (Cnidaria, Hydrozoa). Invertebrate Reproduction and Development, 27, 219–32.CrossRefGoogle Scholar
Hamilton, W. D. (1966). Moulding of senescence by natural selection. Journal of Theoretical Biology, 12, 1245.CrossRefGoogle ScholarPubMed
Harper, J. L. (1977). Population Biology of Plants (London: Academic Press).Google Scholar
Hartnett, D. & Bazzaz, F. (1985). The genet and ramet population dynamics of Solidago canadensis in an abandoned field. Journal of Ecology, 407–13.CrossRefGoogle Scholar
Hase, A. (1909). Über die deutschen Süßwasserpolypen Hydra fusca. L., Hydra grisea L. und Hydra viridis L: Eine biologische Vorarbeit, zugleich ein Beitrag zur Vererbungslehre. Archiv für Rassen- und Gesellschafts-Biologie 6, 721–53.Google Scholar
Hayflick, L. (1965). Limited in vitro lifetime of human diploid cell strains. Experimental Cell Research, 37, 614–36.CrossRefGoogle ScholarPubMed
Hobmayer, B., Jenewein, M., Eder, D., et al. (2012). Stemness in Hydra: a current perspective. International Journal of Developmental Biology, 56, 509–17.CrossRefGoogle ScholarPubMed
Holstein, T. & Emschermann, P. (1995). Cnidaria, Hydrozoa (G. Fischer).Google Scholar
Hughes, R. G. (1987). The loss of hydranths of Laomedea flexuosa Alder and other hydroids, with reference to hydroid senescence. In Modern Trends in the Systematics, ecology, and Evolution of Hydroids and Hydromedusae, ed. Bouillon, J. F., Boero, F., Cicogna, F. & Cornelius, P. F. S. (pp. 171–84 )(Oxford: Clarendon Press).Google Scholar
Imlay, J. A. (2013). The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nature Reviews Microbiology, 11, 443–54.CrossRefGoogle ScholarPubMed
Jones, O. R., Scheuerlein, A., Salguero-Gómez, R., et al. (2014). Diversity of ageing across the tree of life. Nature, 270, 301–4.Google Scholar
Karlson, R. H. (1986). Disturbance, colonial fragmentation, and size-dependent life history variation in two coral reef cnidarians. Marine Ecology Progress Series, 28, 245–9.CrossRefGoogle Scholar
Kawaida, H., Shimizu, H., Fujisawa, T., et al. (2010). Molecular phylogenetic study in genus Hydra. Gene, 468, 3040.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. (1977). Evolution of aging. Nature, 270, 301–4.CrossRefGoogle Scholar
Kirkwood, T. B. L. (1991). Longevity, senescence, and the genome: Finch, Ce. Science, 252, 1864–5.Google Scholar
Kirkwood, T. B. L. (2005). Understanding the odd science of aging. Cell, 120, 437–47.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. & Austad, S. N. (2000). Why do we age? Nature, 408, 233–8.CrossRefGoogle ScholarPubMed
Krafts, K. P. (2010). Tissue repair: the hidden drama. Organogenesis, 6, 225–33.CrossRefGoogle ScholarPubMed
Kramer, B. H. & Schaible, R. (2013). Life span evolution in eusocial workers: a theoretical approach to understanding the effects of extrinsic mortality in a hierarchical system. Plos ONE, 8(4): e61813.CrossRefGoogle Scholar
Martínez, D. E. (1998). Mortality patterns suggest lack of senescence in Hydra. Experimental Gerontology, 33, 217–25.CrossRefGoogle ScholarPubMed
Martínez, D. E. (2002). Senescence and rejuvenation in asexual metazoans. In Reproductive Biology of Invertebrates, Vol. XI: Progress in Asexual Reproduction, ed. Hughes, R. N. (pp. 115–40 ) (New York: Wiley).Google Scholar
Martínez, D. E., Iniguez, A. R., Percell, K. M., et al. (2010). Phylogeny and biogeography of Hydra (Cnidaria: Hydridae) using mitochondrial and nuclear DNA sequences. Molecular Phylogenetics and Evolution, 57, 403–10.CrossRefGoogle ScholarPubMed
Martínez, D. E. & Levinton, J. S. (1992). Asexual metazoans undergo senescence. Proceedings of the National Academy of Sciences of the United States of America, 89, 9920–3.Google ScholarPubMed
Medawar, P. B. (1952). Uniqueness of the Individual: An Unsolved Problem of Biology (pp. 4470 ) (London: Lewis).Google Scholar
Moore, L. B. & Campbell, R. D. (1973). Non‐budding strains of Hydra: isolation from sexual crosses and developmental regulation of form. Journal of Experimental Zoology, 185, 7381.CrossRefGoogle ScholarPubMed
Nilsson Skold, H. & Obst, M. (2011). Potential for clonal animals in longevity and ageing studies. Biogerontology, 12, 387–96.CrossRefGoogle ScholarPubMed
Orive, M. E. (1995). Senescence in organisms with clonal reproduction and complex life-histories. American Naturalist, 145, 90108.CrossRefGoogle Scholar
Otto, J. J. & Campbell, R. D. (1977). Budding in Hydra attenuata: bud stages and fate map. Journal of Experimental Zoology, 200, 417–28.Google ScholarPubMed
Quinn, B., Gagne, F. & Blaise, C. (2012). Hydra, a model system for environmental studies. International Journal of Developmental Biology, 56, 613–25.CrossRefGoogle Scholar
Reznick, D. N., Bryant, M. J., Roff, D., et al. (2004). Effect of extrinsic mortality on the evolution of senescence in guppies. Nature, 431, 1095–9.CrossRefGoogle ScholarPubMed
Ribi, G., Tardent, R., Tardent, P. & Scascighini, C. (1985). Dynamics of Hydra populations in Lake Zurich, Switzerland, and Lake Maggiore, Italy. Schweizerische Zeitschrift fur Hydrologie, 47, 4556.CrossRefGoogle Scholar
Ricklefs, R. E. (1979). Adaptation, constraint, and compromise in avian postnatal-development. Biological Reviews of the Cambridge Philosophical Society, 54, 269–90.CrossRefGoogle ScholarPubMed
Robert, K. A. & Bronikowski, A. M. (2010). Evolution of senescence in nature: physiological evolution in populations of garter snake with divergent life histories. American Naturalist, 175, 147–59.CrossRefGoogle ScholarPubMed
Roos, W. P. & Kaina, B. (2006). DNA damage-induced cell death by apoptosis. Trends in Molecular Medicine, 12, 440–50.CrossRefGoogle ScholarPubMed
Salo, E. (2006). The power of regeneration and the stem-cell kingdom: freshwater planarians (platyhelminthes). Bioessays, 28, 546–59.CrossRefGoogle ScholarPubMed
Sancar, A., Lindsey-Boltz, L. A., Unsal-Kacmaz, K. & Linn, S. (2004). Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annual Review of Biochemistry, 73, 3985.CrossRefGoogle ScholarPubMed
Schaible, R., Ringelhan, F., Kramer, B. H. & Miethe, T. (2011). Environmental challenges improve resource utilization for asexual reproduction and maintenance in Hydra. Experimental Gerontology, 46, 794802.CrossRefGoogle ScholarPubMed
Schaible, R., Scheuerlein, A., Dańko, M. J., et al. (2015). Constant mortality and fertility over age in Hydra. Proceedings of the National Academy of Sciences of the United States of America, 112(51), 15701–6.Google ScholarPubMed
Schaible, R. & Sussman, M. (2013). FOXO in aging: did evolutionary diversification of FOXO function distract it from prolonging life? Bioessays, 35, 1101–10.CrossRefGoogle ScholarPubMed
Schaible, R., Sussman, M. & Boris, K. H. (2014). Aging and the potential of self-renewal: Hydra living in the age of aging – a mini-review. Gerontology, 60, 548–56.CrossRefGoogle ScholarPubMed
Schierwater, B., Eitel, M., Jakob, W., et al. (2009). Concatenated analysis sheds light on early metazoan evolution and fuels a modern ‘urmetazoon’ hypothesis. PLoS Biology, 7(1): e1000020.CrossRefGoogle Scholar
Shapiro, F. (2008). Bone development and its relation to fracture repair: the role of mesenchymal osteoblasts and surface osteoblasts. European Cells and Materials, 15, 5376.CrossRefGoogle ScholarPubMed
Shimizu, H., Sawada, Y. & Sugiyama, T. (1993). Minimum tissue size required for Hydra regeneration. Developmental Biology, 155, 287–96.CrossRefGoogle ScholarPubMed
Sparkman, A. M., Vleck, C. M. & Bronikowski, A. M. (2009). Evolutionary ecology of endocrine-mediated life-history variation in the garter snake Thamnophis elegans. Ecology, 90, 720–8.CrossRefGoogle ScholarPubMed
Stearns, S. C. (1992). The Evolution of Life Histories (New York, Oxford University Press).Google Scholar
Steele, R. E. (2002). Developmental signalling in Hydra: what does it take to build a ‘simple’ animal? Developmental Biology, 248, 199219.CrossRefGoogle ScholarPubMed
Stewart, E. J., Madden, R., Paul, G. & Taddei, F. (2005). Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biology, 3, 295300.CrossRefGoogle Scholar
Sugiyama, T. & Fujisawa, T. (1977). Genetic analysis of developmental mechanisms in hydra: I. Sexual reproduction of Hydra magnipapillata and isolation of mutants. Development, Growth and Differentiation, 19, 187200.CrossRefGoogle ScholarPubMed
Tanner, J. E. (2001). The influence of clonality on demography: patterns in expected longevity and survivorship. Ecology, 82, 1971–81.CrossRefGoogle Scholar
Technau, U. & Steele, R. E. (2011). Evolutionary crossroads in developmental biology: Cnidaria. Development, 138, 1447–58.CrossRefGoogle ScholarPubMed
Tumarkin-Deratzian, A. R., Vann, D. R. & Dodson, P. (2007). Growth and textural ageing in long bones of the American alligator Alligator mississippiensis (Crocodylia: Alligatoridae). Zoological Journal of the Linnean Society, 150, 139.CrossRefGoogle Scholar
Von Bertalanffy, L. (1948). Das organische Wachstum und seine Gesetzmäßigkeiten. Experientia, 4, 255–69.CrossRefGoogle Scholar
Wang, P., Robert, L., Pelletier, J., et al. (2010). Robust growth of Escherichia coli. Current Biology, 20, 10991103.CrossRefGoogle ScholarPubMed
Warren, A. & Robson, E.A. (1998). The identity and occurrence of Kerona pediculus (Ciliophora: Hypotrichida), a well-known epizoite of Hydra vulgaris (Cnidaria: Hydrozoa). Zoologische Verhandelingen (Leiden), 323, 235–45.Google Scholar
Watkinson, A. (1992). Plant senescence. Trends in Ecology and Evolution, 7, 417–20.CrossRefGoogle ScholarPubMed
Watson, M. A. & Casper, B. B. (1984). Morphogenetic constraints on patterns of carbon distribution in plants. Annual Review of Ecology and Systematics, 15, 233–58.CrossRefGoogle Scholar
Welch, P. S. & Loomis, H. A. (1924). A limnological study of Hydra oligactis in Douglas Lake, Michigan. Transactions of the American Microscopical Society, 43, 203–35.CrossRefGoogle Scholar
Williams, P. D. & Day, T. (2003). Antagonistic pleiotropy, mortality source interactions, and the evolutionary theory of senescence. Evolution, 57, 1478–88.Google ScholarPubMed
Williams, P. D., Day, T., Fletcher, Q. & Rowe, L. (2006). The shaping of senescence in the wild. Trends in Ecology and Evolution, 21, 458–63.CrossRefGoogle ScholarPubMed
Yoshida, K., Fujisawa, T., Hwang, J. S., et al. (2006). Degeneration after sexual differentiation in Hydra and its relevance to the evolution of aging. Gene, 385, 6470.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×