Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T13:39:07.268Z Has data issue: false hasContentIssue false

7 - Senescence in Mammalian Life History Traits

from Part II - Senescence in Animals

Published online by Cambridge University Press:  16 March 2017

Richard P. Shefferson
Affiliation:
University of Tokyo
Owen R. Jones
Affiliation:
University of Southern Denmark
Roberto Salguero-Gómez
Affiliation:
University of Sheffield
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, P. A. (1993). Does increased mortality favor the evolution of more rapid senescence? Evolution, 47, 877–87.CrossRefGoogle ScholarPubMed
Adams, L. G. & Dale, B. W. (1998). Reproductive performance of female Alaskan caribou. Journal of Wildlife Management, 62, 1184–95.CrossRefGoogle Scholar
Albon, S. D., Stien, A., Irvine, R. J., et al. (2002). The role of parasites in the dynamics of a reindeer population. Proceedings of the Royal Society of London Series B: Biological Sciences, 269, 1625–32.CrossRefGoogle ScholarPubMed
Aumaître, A., Morvan, C., Quéré, J. P., et al. (1982). Productivité potentielle et reproduction hivernale chez la laie (Sus scrofa scrofa) en milieu sauvage. Journée de la Recherche Porcine, 14, 109–24.Google Scholar
Austad, S. N. (1993). Retarded senescence in an insular population of Virginia opossums (Didelphis virginiana). Journal of Zoology, 229, 695708.CrossRefGoogle Scholar
Baker, J. D. & Thompson, P. M. (2007). Temporal and spatial variation in age-specific survival rates of a long-lived mammal, the Hawaiian monk seal. Proceedings of the Royal Society of London Series B: Biological Sciences, 274, 407–15.Google ScholarPubMed
Bailey, J. A. (1991). Reproductive success in female mountain goats. Canadian Journal of Zoology, 69, 2956–61.CrossRefGoogle Scholar
Beauplet, G., Barbraud, C., Dabin, W., Kussener, C. & Guinet, C. (2006). Age-specific survival and reproductive performances in fur seals: evidence of senescence and individual quality. Oikos, 112, 430–41.CrossRefGoogle Scholar
Bebbington, M., Lai, C. & Zitikis, R. (2007). Modeling human mortality using mixtures of bathtub shaped failure distributions. Journal of Theoretical Biology, 245, 528–38.CrossRefGoogle ScholarPubMed
Beirne, C., Delahay, R. & Young, A. (2015). Sex differences in senescence: the role of intra-sexual competition in early adulthood. Proceedings of the Royal Society of London Series B: Biological Sciences, 282, 20151086.Google ScholarPubMed
Berger, V., Lemaître, J. F., Gaillard, J.-M. & Cohas, A. (2015). How do animals optimize the size-number trade-off when aging? Insights from reproductive senescence patterns in marmots. Ecology, 96, 4653.CrossRefGoogle ScholarPubMed
Berger, V., Lemaître, J. F., Gaillard, J.-M. & Cohas, A. (2016). Age-specific survival in the socially monogamous alpine marmot (Marmota marmota): evidence of senescence. Journal of Mammalogy 97, 9921000.CrossRefGoogle Scholar
Bergeron, P., Careau, V., Humphries, M. M., et al. (2011). The energetic and oxidative costs of reproduction in a free-ranging rodent. Functional Ecology, 25, 1063–71.CrossRefGoogle Scholar
Bérubé, C. H., Festa-Bianchet, M. & Jorgenson, J. T. (1999). Individual differences, longevity, and reproductive senescence in bighorn ewes. Ecology, 80, 2555–65.CrossRefGoogle Scholar
Bishop, C. J., White, G. C., Freddy, D. J., et al. (2009). Effect of enhanced nutrition on mule deer population rate of change. Wildlife Monographs, 172, 128.CrossRefGoogle Scholar
Blomquist, G. E. (2009). Trade-off between age of first reproduction and survival in a female primate. Biology Letters, 5, 339–42.CrossRefGoogle Scholar
Bouwhuis, S., Choquet, R., Sheldon, B. C. & Verhulst, S. (2012). The forms and fitness cost of senescence: age-specific recapture, survival, reproduction, and reproductive value in a wild bird population. American Naturalist, 179, E1527.CrossRefGoogle Scholar
Bowen, W. D., Iverson, S. J., McMillan, J. I. & Boness, D. J. (2006). Reproductive performance in grey seals: age-related improvement and senescence in a capital breeder. Journal of Animal Ecology, 75, 1340–51.CrossRefGoogle Scholar
Bradley, A. J. (1997). Reproduction and life history in the red-tailed phascogale, Phascogale calura (Marsupialia: Dasyuridae): the adaptive-stress senescence hypothesis. Journal of Zoology, 241, 739–55.CrossRefGoogle Scholar
Bronikowski, A. M., Altmann, J., Brockman, D. K., et al. (2011). Aging in the natural world: comparative data reveal similar mortality patterns across primates. Science, 331, 1325–8.CrossRefGoogle ScholarPubMed
Broussard, D. R., Michener, G. R., Risch, T. S. & Dobson, F. S. (2005). Somatic senescence: evidence from female Richardson’s ground squirrels. Oikos, 108, 591601.CrossRefGoogle Scholar
Broussard, D. R., Risch, T. S., Dobson, F. S. & Murie, J. O. (2003). Senescence and age-related reproduction of female Columbian ground squirrels. Journal of Animal Ecology, 72, 212–19.CrossRefGoogle Scholar
Byers, J. A. (1997). American Pronghorn: Social Adaptations and the Ghosts of Predators Past (University of Chicago Press).Google Scholar
Cagnacci, F., Boitani, L., Powell, R. A. & Boyce, M. S. (2010). Animal ecology meets GPS-based radiotelemetry: a perfect storm of opportunities and challenges. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 365, 2157–62.CrossRefGoogle ScholarPubMed
Carey, J. R. & Judge, D. S. (2000). Longevity Records: Life Spans of Mammals, Birds, Reptiles, Amphibians and Fish (Odense Monographs on Population Aging) (Odense University Press).Google Scholar
Catchpole, E. A., Morgan, B. J. T., Coulson, T. N., et al. (2000). Factors influencing Soay sheep survival. Journal of the Royal Statistical Society Series C: Applied Statistics, 49, 453–72.CrossRefGoogle Scholar
Caughley, G. (1966). Mortality patterns in mammals. Ecology, 47, 906–18.CrossRefGoogle Scholar
Caughley, G. (1976). Wildlife management and the dynamics of ungulate populations. In Applied Biology, Vol. 1 (pp. 183246), ed. Coaker, T. H. (London: Academic Press).Google Scholar
Chen, H. Y. & Maklakov, A. A. (2012). Longer life span evolves under high rates of condition-dependent mortality. Current Biology, 22, 2140–3.CrossRefGoogle ScholarPubMed
Childerhouse, S. J., Dawson, S. M., Fletcher, D. J., et al. (2010). Growth and reproduction of female New Zealand sea lions. Journal of Mammalogy, 91, 165–76.CrossRefGoogle Scholar
Chilvers, B. L., Wilkinson, I. S. & Mackenzie, D. I. (2010). Predicting life-history traits for female New Zealand sea lions, Phocarctos hookeri: integrating short-term mark-recapture data and population modeling. Journal of Agricultural Biological and Environmental Statistics, 15, 259–78.CrossRefGoogle Scholar
Choquet, R. & Nogué, E. (2011). E-SURGE 1–8 User’s Manual (CEFE, UMR 5175, Montpellier, France), available at http://ftp.cefe.cnrs.fr/biom/soft-cr/.Google Scholar
Choquet, R., Viallefont, A., Rouan, L., et al. (2011). A semi-Markov model to assess reliably survival patterns from birth to death in free-ranging populations. Methods in Ecology and Evolution, 2, 383–9.CrossRefGoogle Scholar
Christensen, L. L., Selman, C., Blount, J. D., et al. (2015). Plasma markers of oxidative stress are uncorrelated in a wild mammal. Ecology and Evolution, 5, 50965108.CrossRefGoogle Scholar
Clutton-Brock, T. H., Guinness, F. E. & Albon, S. D. (1982). Red Deer: Ecology and Behaviour of Both Sexes (University of Chicago Press).Google Scholar
Clutton-Brock, T. H. (1984). Reproductive effort and terminal investment in iteroparous animals. American Naturalist, 123, 212–29.CrossRefGoogle Scholar
Clutton-Brock, T. H. (1988). Reproductive Success: Studies of Individual Variation in Contrasting Breeding Systems (University of Chicago Press).Google Scholar
Clutton-Brock, T. H., Albon, S. D. & Guinness, F. E. (1988). Reproductive success in male and female red deer. In Reproductive Success: Studies of Individual Variation in Contrasting Breeding Systems (pp. 325–43), ed. Clutton-Brock, T. H. (University of Chicago Press).Google Scholar
Clutton-Brock, T. H. & Isvaran, K. (2007). Sex differences in ageing in natural populations of vertebrates. Proceedings of the Royal Society of London Series B: Biological Sciences, 274, 30973310.Google ScholarPubMed
Clutton-Brock, T. H. & Sheldon, B. C. (2010). Individuals and populations: the role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends in Ecology and Evolution, 25, 562–73.CrossRefGoogle ScholarPubMed
Cohen, A. A. (2004). Female post-reproductive lifespan: a general mammalian trait. Biological Reviews, 79, 733–50.CrossRefGoogle ScholarPubMed
Cohen, A. A. (2015). Complex systems dynamics in aging: new evidence, continuing questions. Biogerontology, 17, 116.Google ScholarPubMed
Colchero, F., Jones, O. R. & Rebke, M. (2012). BaSTA: an R package for Bayesian estimation of age-specific survival from incomplete mark-recapture/recovery data with covariates. Methods in Ecology and Evolution, 3, 466–70.CrossRefGoogle Scholar
Comfort, A. (1979). The Biology of Senescence (London: Churchill Livingston).Google Scholar
Crampe, J. P., Loison, A., Gaillard, J.-M., et al. (2006). Monitoring of the reproduction in isard females (Rupicapra pyrenaica pyrenaica) in a non-hunted population and demographic consequences. Canadian Journal of Zoology, 84, 1263–8.CrossRefGoogle Scholar
Crosier, A. E., Marker, L., Howard, J., et al. (2007). Ejaculate traits in the Namibian cheetah (Acinomyx jubatus): influence of age, season and captivity. Reproduction Fertility and Development, 19, 370–82.CrossRefGoogle ScholarPubMed
Curren, L. J., Weldele, M. L. & Holekamp, K. E. (2013). Ejaculate quality in spotted hyenas: intraspecific variation in relation to life-history traits. Journal of Mammalogy, 94, 90–9.CrossRefGoogle Scholar
Davis, W. H. (1966). Population dynamics of bat Pipistrellus subflavus. Journal of Mammalogy, 47, 383.CrossRefGoogle Scholar
Deevey, E. S. (1947). Life tables for natural populations of animals. Quarterly Review of Biology, 22, 283314.CrossRefGoogle ScholarPubMed
Delean, J. S. C. (2007). Longitudinal Population Demography of the Allied Rock Wallaby, Petrogale assimilis. Unpublished PhD dissertation, James Cook University, Australia.Google Scholar
de Magalhaes, J. P. & Costa, J. (2009). A database of vertebrate longevity records and their relation to other life-history traits. Journal of Evolutionary Biology, 22, 1770–4.CrossRefGoogle ScholarPubMed
de Magalhaes, J. P., Costa, J. & Church, G. M. (2007). Analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts. Journals of Gerontology Series A, 62, 149–60.CrossRefGoogle ScholarPubMed
Delgiudice, G. D., Fieberg, J., Riggs, M. R., et al. (2006). A long-term age-specific survival analysis of female white-tailed deer. Journal of Wildlife Management, 70, 1556–68.CrossRefGoogle Scholar
DelGiudice, G. D., Lenarz, M. S. & Powell, M. C. (2007). Age-specific fertility and fecundity in northern free-ranging white-tailed deer: evidence for reproductive senescence? Journal of Mammalogy, 88, 427–35.CrossRefGoogle Scholar
Derocher, A. E. & Stirling, I. (1994). Age-specific reproductive performance of female polar bears (Ursus maritimus). Journal of Zoology, 234, 527–36.Google Scholar
Descamps, S., Boutin, S., Berteaux, D. & Gaillard, J.-M. (2007). Female red squirrels fit Williams’ hypothesis of increasing reproductive effort with increasing age. Journal of Animal Ecology, 76, 11921201.CrossRefGoogle ScholarPubMed
Dinerstein, E. (1991). Demography and habitat use by greater one-horned rhinoceros in Nepal. Journal of Wildlife Management, 55, 401–11.CrossRefGoogle Scholar
Dobson, F. S. (1992). Body mass, structural size, and life-history patterns of the Columbian ground squirrel. American Naturalist, 140, 109–25.CrossRefGoogle ScholarPubMed
Dugdale, H. L., Pope, L. C., Newman, C., et al. (2011). Age-specific breeding success in a wild mammalian population: selection, constraint, restraint and senescence. Molecular Ecology, 20, 3261–74.CrossRefGoogle Scholar
Dunbar, R. I. M. (1980). Demographic and life-history variables of a population of Gelada baboons (Theropithecus, gelada). Journal of Animal Ecology, 49, 485506.CrossRefGoogle Scholar
Eberhardt, L. L. (1985). Assessing the dynamics of wild populations. Journal of Wildlife Management, 49, 9971012.CrossRefGoogle Scholar
Emlen, J. M. (1970). Age specificity and ecological theory. Ecology, 51, 588601.CrossRefGoogle Scholar
Ericsson, G. & Wallin, K. (2001). Age-specific moose (Alces alces) mortality in a predator-free environment: evidence for senescence in females. Ecoscience, 8, 157–63.CrossRefGoogle Scholar
Ericsson, G., Wallin, K., Ball, J. P. & Broberg, M. (2001). Age-related reproductive effort and senescence in free-ranging moose, Alces alces. Ecology, 82, 1613–20.CrossRefGoogle Scholar
Evans, K. & Hindell, M. A. (2004). The age structure and growth of female sperm whales (Physeter macrocephalus) in southern Australian waters. Journal of Zoology, 263, 237–50.CrossRefGoogle Scholar
Festa-Bianchet, M., Gaillard, J.-M. & Côté, S. D. (2003). Variable age structure and apparent density dependence in survival of adult ungulates. Journal of Animal Ecology, 72, 640.CrossRefGoogle ScholarPubMed
Festa-Bianchet, M. & Côté, S. D. (2008). Mountain Goats: Ecology, Behavior, and Conservation of an Alpine Ungulate (Washington, DC: Island Press).Google Scholar
Fisher, R. A. (1930). The Genetical Theory of Natural Selection (Oxford: Clarendon Press).CrossRefGoogle Scholar
Flook, D. R. (1970). Causes and implications of an observed sex differential in the survival of wapiti. Canadian Wildlife Service Report, 11, 170.Google Scholar
Focardi, S., Gaillard, J.-M., Ronchi, F. & Rossi, S. (2008). Survival of wild boars in variable environments: unexpected life-history variation in an unusual ungulate. Journal of Mammalogy, 89, 1113–23.CrossRefGoogle Scholar
Foote, A. D. (2008). Mortality rate acceleration and post-reproductive lifespan in matrilineal whale species. Biology Letters, 4, 189–91.CrossRefGoogle ScholarPubMed
Fraga, C. G., Shigenaga, M. K., Park, J. W., et al. (1990). Oxidative damage to DNA during aging: 8-hydroxy-2’-deoxyguanosine in rat organ DNA and urine. Proceedings of the National Academy of Sciences of the United States of America, 87, 4533–7.Google ScholarPubMed
Gaillard, J.-M., Pontier, D., Allainé, D., et al. (1989). An analysis of demographic tactics in birds and mammals. Oikos, 56, 5976.CrossRefGoogle Scholar
Gaillard, J.-M., Liberg, O., Andersen, R., et al. (1998). Population dynamics of roe deer. In European Roe Deer: The Biology of Success (pp. 309–35), ed. Andersen, R., Duncan, P. & Linnell, J. D. C. (Oslo: Scandinavian University Press).Google Scholar
Gaillard, J.-M., Festa-Bianchet, M., Yoccoz, N. G., et al. (2000). Temporal variation in fitness components and population dynamics of large herbivores. Annual Review of Ecology and Systematics, 31, 367–93.CrossRefGoogle Scholar
Gaillard, J.-M., Duncan, P., Delorme, D., et al. (2003). Effects of hurricane Lothar on the population dynamics of European roe deer. Journal of Wildlife Management, 67, 767–73.CrossRefGoogle Scholar
Gaillard, J.-M., Loison, A., Festa-Bianchet, M., et al. (2003). Ecological correlates of life span in populations of large herbivorous mammals. Population & Development Review, 29, 3956.Google Scholar
Gaillard, J.-M., Viallefont, A., Loison, A. & Festa-Bianchet, M. (2004). Assessing senescence patterns in populations of large mammals. Animal Biodiversity and Conservation, 27, 4758.Google Scholar
Gaillard, J.-M., Yoccoz, N. G., Lebreton, J.-D., et al. (2005). Generation time: a reliable metric to measure life‐history variation among mammalian populations. American Naturalist, 166, 119–23.CrossRefGoogle Scholar
Gaillard, J.-M., Hewison, A. J. M., Klein, F., et al. (2013). How does climate change influence demographic processes of widespread species? Lessons from the comparative analysis of contrasted populations of roe deer. Ecology Letters, 16, 4857.CrossRefGoogle ScholarPubMed
Gamelon, M., Focardi, S., Gaillard, J.-M., et al. (2014). Do age-specific survival patterns of wild boar fit current evolutionary theories of senescence? Evolution, 68, 3636–43.CrossRefGoogle ScholarPubMed
Garratt, M., Gaillard, J.-M., Brooks, R. C. & Lemaître, J. F. (2013). Diversification of the eutherian placenta is associated with changes in the pace of life. Proceedings of the National Academy of Sciences of the United States, 110, 7760–5.CrossRefGoogle ScholarPubMed
Garrott, R. A. & Taylor, L. (1990). Dynamics of a feral horse population in Montana. Journal of Wildlife Management, 54, 603–12.CrossRefGoogle Scholar
Garrott, R. A., Eagle, T. C. & Plotka, E. D. (1991). Age-specific reproduction in feral horses. Canadian Journal of Zoology, 69, 738–43.CrossRefGoogle Scholar
Garrott, R. A., Eberhardt, L. L., White, P. J. & Rotella, J. (2003). Climate-induced variation in vital rates of an unharvested large-herbivore population. Canadian Journal of Zoology, 81, 3345.CrossRefGoogle Scholar
Gimenez, O., Viallefont, A., Charmantier, A., et al. (2008). The risk of flawed inference in evolutionary studies when detectability is less than one. American Naturalist, 172, 441–8.CrossRefGoogle ScholarPubMed
Gompertz, B. (1825). On the nature of the function expressive of the law of human mortality and on a new model of determining life contingencies. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 115, 513–85.Google Scholar
Graham, A. L., Hayward, A. D., Watt, K. A., et al. (2010). Fitness correlates of heritable variation in antibody responsiveness in a wild mammal. Science, 330, 662–5.CrossRefGoogle Scholar
Green, W. C. H. (1990). Reproductive effort and associated costs in bison (Bison bison): do older mothers try harder? Behavioral Ecology, 1, 148–60.CrossRefGoogle Scholar
Hadley, G. L., Rotella, J. J. & Garrott, R. A. (2007). Evaluation of reproductive costs for Weddell seals in Erebus Bay, Antarctica. Journal of Animal Ecology, 76, 448–58.CrossRefGoogle ScholarPubMed
Hämäläinen, A., Dammhahn, M., Aujard, F., et al. (2015). Senescence or selective disappearance? Age trajectories of body mass in wild and captive populations of a small-bodied primate. Proceedings of the Royal Society of London Series B: Biological Sciences, 281, 20140830.Google Scholar
Hamel, S., Craine, J. M. & Towne, E. G. (2012). Maternal allocation in bison: co-occurrence of senescence, cost of reproduction, and individual quality. Ecological Applications, 22, 1628–39.Google ScholarPubMed
Hamilton, W. D. (1966). Moulding of senescence by natural selection. Journal of Theoretical Biology, 12, 1245.CrossRefGoogle ScholarPubMed
Hanks, J. (1972). Reproduction of elephant, Loxodonta africana, in Luangwa Valley, Zambia. Journal of Reproduction and Fertility, 30, 1326.CrossRefGoogle ScholarPubMed
Harting, A. L., Baker, J. D. & Johanos, T. C. (2007). Reproductive patterns of the Hawaiian monk seal. Marine Mammal Science, 23, 553–73.CrossRefGoogle Scholar
Hayward, A. D., Wilson, A. J., Pilkington, J. G., et al. (2009). Ageing in a variable habitat: environmental stress affects senescence in parasite resistance in St Kilda Soay sheep. Proceedings of the Royal Society of London Series B: Biological Sciences, 276, 3477–85.Google Scholar
Hayward, A. D., Wilson, A. J., Pilkington, J. G., et al. (2013). Reproductive senescence in female Soay sheep: variation across traits and contributions of individual ageing and selective disappearance. Functional Ecology, 27, 184–95.CrossRefGoogle Scholar
Hayward, A. D., Mar, K. U., Lahdenperä, M. & Lummaa, V. (2014). Early reproductive investment, senescence and lifetime reproductive success in female Asian elephants. Journal of Evolutionary Biology, 27, 772–83.CrossRefGoogle ScholarPubMed
Hayward, A. D., Moorad, J., Regan, C. E., et al. (2015). Asynchrony of senescence among phenotypic traits in a wild mammal population. Experimental Gerontology, 71, 5668.CrossRefGoogle Scholar
Heard, D., Barry, S., Watts, G. & Child, K. (1997). Fertility of female moose (Alces alces) in relation to age and body composition. Alces, 33, 165–76.Google Scholar
Hernandez-Camacho, C. J., Aurioles-Gamboa, D. & Gerber, L. R. (2008a). Age-specific birth rates of California sea lions (Zalophus californianus) in the Gulf of California, Mexico. Marine Mammal Science, 24, 664–76.CrossRefGoogle Scholar
Hernandez-Camacho, C. J., Aurioles-Gamboa, D., Laake, J. & Gerber, L. R. (2008b). Survival rates of the California sea lion, Zalophus californianus, in Mexico. Journal of Mammalogy, 89, 1059–66.CrossRefGoogle Scholar
Hewison, A. J. M. & Gaillard, J.-M. (2001). Phenotypic quality and senescence affect different components of reproductive output in roe deer. Journal of Animal Ecology, 70, 600–8.CrossRefGoogle Scholar
Hibly, A. R. & Mullen, A. J. (1980). Simultaneous determination of fluctuating age structure and mortality from field data. Theoretical Population Biology, 18, 192203.CrossRefGoogle Scholar
Hindle, A. G., Horning, M., Mellish, J.-A. E. & Lawler, J. M. (2009a). Diving into old age: muscular senescence in a large-bodied, long-lived mammal, the Weddell seal (Leptonychotes weddellii). Journal of Experimental Biology, 212, 790–6.CrossRefGoogle Scholar
Hindle, A. G., Lawler, J. M., Campbell, K. L. & Horning, M. (2009b). Muscle senescence in short-lived wild mammals, the soricine shrews Blarina brevicauda and Sorex palustris. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 311A, 358–67.Google Scholar
Hindle, A. G., Lawler, J. M., Campbell, K. L. & Horning, M. (2010). Muscle aging and oxidative stress in wild-caught shrews. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 155, 427–34.CrossRefGoogle ScholarPubMed
Hoffman, C. L., Higham, J. P., Mas-Rivera, A., et al. (2010). Terminal investment and senescence in rhesus macaques (Macaca mulatta) on Cayo Santiago. Behavioral Ecology, 21, 972–8.CrossRefGoogle ScholarPubMed
Holmes, E. E., Fritz, L. W., York, A. E. & Sweeney, K. (2007). Age-structured modeling reveals long-term declines in the natality of western Steller sea lions. Ecological Applications, 17, 2214–32.CrossRefGoogle ScholarPubMed
Isaac, J. L. & Johnson, C. N. (2005). Terminal reproductive effort in a marsupial. Biology Letters, 1, 271–5.CrossRefGoogle Scholar
Jégo, M., Lemaître, J. F., Bourgoin, G., et al. (2014). Haematological parameters do senesce in the wild: evidence from different populations of a long-lived mammal. Journal of Evolutionary Biology, 27, 2745–52.CrossRefGoogle ScholarPubMed
Jones, O. R., Gaillard, J.-M., Tuljapurkar, S., et al. (2008). Senescence rates are determined by ranking on the fast-slow life-history continuum. Ecology Letters, 11, 664–73.CrossRefGoogle ScholarPubMed
Jorgenson, J. T., Festa-Bianchet, M., Gaillard, J.-M. & Wishart, W. D. (1997). Effects of age, sex, disease, and density on survival of bighorn sheep. Ecology, 78, 1019–32.CrossRefGoogle Scholar
Juškaitis, R. (2008). The Common Dormouse Muscardinus avellanarius: Ecology, Population Structure and Dynamics (Institute of Ecology of Vilnius University).Google Scholar
Kirkwood, T. B. L. (1977). Evolution of ageing. Nature, 270, 301–4.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. & Austad, S. N. (2000). Why do we age? Nature, 408, 233–8.CrossRefGoogle ScholarPubMed
Koons, D. N., Gamelon, M., Gaillard, J.-M., et al. (2014). Methods for studying cause-specific senescence in the wild. Methods in Ecology and Evolution, 5, 924–33.CrossRefGoogle Scholar
Koyama, N., Takahata, Y., Huffman, M. A., et al. (1992). Reproductive parameters of female Japanese macaques: 30 years data from the Arashyiama troops, Japan. Primates, 33, 3347.CrossRefGoogle Scholar
Lander, R. H. (1981). A life table and biomass estimate for Alaskan fur seals. Fisheries Research, 1, 5570.CrossRefGoogle Scholar
Lawrence, R. K., Demarais, S., Relyea, R. A., et al. (2004). Desert mule deer survival in southwest Texas. Journal of Wildlife Management, 68, 561–9.CrossRefGoogle Scholar
Leader-Williams, N. (1988). Reindeer on South Georgia (Cambridge University Press).Google Scholar
Lebreton, J.-D., Burnham, K. P., Clobert, J. & Anderson, D. R. (1992). Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecological Monographs, 62, 67118.CrossRefGoogle Scholar
Lee, D. E. & Tietje, W. D. (2005). Dusky-footed woodrat demography and prescribed fire in a California oak woodland. Journal of Wildlife Management, 69, 1211–20.CrossRefGoogle Scholar
Leigh, S. R., Setchell, J.-M., Charpentier, M., et al. (2008). Canine tooth size and fitness in male mandrills (Mandrillus sphinx). Journal of Human Evolution, 55, 7585.CrossRefGoogle ScholarPubMed
Lemaître, J. F. & Gaillard, J.-M. (2013a). Polyandry has no detectable mortality cost in female mammals. PloS ONE, 8, e66670.CrossRefGoogle Scholar
Lemaître, J. F. & Gaillard, J.-M (2013b). Male survival patterns do not depend on male allocation to sexual competition in large herbivores. Behavioral Ecology, 24, 421–8.CrossRefGoogle Scholar
Lemaître, J. F., Gaillard, J.-M., Lackey, L. B., et al. (2013). Comparing free-ranging and captive populations reveals intra-specific variation in aging rates in large herbivores. Experimental Gerontology, 48, 162–7.CrossRefGoogle ScholarPubMed
Lemaître, J. F., Gaillard, J.-M., Pemberton, J. M., et al. (2014). Early life expenditure in sexual competition is associated with increased reproductive senescence in male red deer. Proceedings of the Royal Society of London B: Biological Sciences, 281, 20140792.Google ScholarPubMed
Lemaître, J. F., Berger, V., Bonenfant, C., Douhard, M., Gamelon, M., et al. (2015). Early-late life trade-offs and the evolution of ageing in the wild. Proceedings of the Royal Society of London Series B: Biological Sciences, 282, 20150209.Google ScholarPubMed
Lima, M. & Paez, E. (1997). Demography and population dynamics of South American fur seals. Journal of Mammalogy, 78, 914–20.CrossRefGoogle Scholar
Lindstedt, S. L. & Calder, W. A. (1981). Body size, physiological time, and longevity of homeothermic animals. Quarterly Review of Biology, 56, 116.CrossRefGoogle Scholar
Loison, A., Festa-Bianchet, M., Gaillard, J.-M., et al. (1999). Age-specific survival in five populations of ungulates: evidence of senescence. Ecology, 80, 2539–54.CrossRefGoogle Scholar
Lunn, N. J., Boyd, I. L. & Croxall, J. P. (1994). Reproductive performance of female Antarctic fur seals: the influence of age, breeding experience, environmental variation and individual quality. Journal of Animal Ecology, 63, 827–40.CrossRefGoogle Scholar
Lynch, H. J. & Fagan, W. F. (2009). Survivorship curves and their impact on the estimation of maximum population growth rates. Ecology, 90, 1116–24.CrossRefGoogle ScholarPubMed
Maizels, R. M. & Nussey, D. H. (2013). Into the wild: digging at immunology’s evolutionary roots. Nature Immunology, 14, 879–83.CrossRefGoogle ScholarPubMed
McAdam, A. G., Boutin, S., Sykes, A. K. & Humphries, M. M. (2007). Life histories of female red squirrels and their contributions to population growth and lifetime fitness. Ecoscience, 14, 362–9.CrossRefGoogle Scholar
McCullough, D. R. (1979). The George Reserve Deer Herd: Population Ecology of a K-Selected Species (Ann Arbor: University of Michigan Press).Google Scholar
McDonald, J. L., Smith, G. C., McDonald, R. A., et al. (2014). Mortality trajectory analysis reveals the drivers of sex-specific epidemiology in natural wildlife-disease interactions. Proceedings of the Royal Society of London Series B: Biological Sciences, 281, 20140526.Google ScholarPubMed
Medawar, P. B. (1952). An Unsolved Problem of Biology (London: Lewis).Google Scholar
Menkens, G. E. & Boyce, M. S. (1993). Comments on the use of time-specific and cohort life tables. Ecology, 74, 2164–8.CrossRefGoogle Scholar
Millar, J. S. (1994). Senescense in a population of small mammals? Ecoscience, 1, 317–21.CrossRefGoogle Scholar
Milner, J. M., Stien, A., Irvine, R. J., et al. (2003). Body condition in Svalbard reindeer and the use of blood parameters as indicators of condition and fitness. Canadian Journal of Zoology, 81, 1566–78.CrossRefGoogle Scholar
Milot, E., Cohen, A. A., Vézina, F., et al. (2014). A novel integrative method for measuring body condition in ecological studies based on physiological dysregulation. Methods in Ecology and Evolution, 5, 146–55.CrossRefGoogle Scholar
Monteith, K. L., Bleich, V. C., Stephenson, T. R., et al. (2014). Life-history characteristics of mule deer: effects of nutrition in a variable environment. Wildlife Monographs, 186, 162.CrossRefGoogle Scholar
Moore, J. E. & Read, A. J. (2008). A Bayesian uncertainty analysis of cetacean demography and bycatch mortality using age-at-death data. Ecological Applications, 18, 1914–31.CrossRefGoogle ScholarPubMed
Morris, D. W. (1996). State-dependent life history and senescence of white-footed mice. Ecoscience, 3, 16.Google Scholar
Müller, D. W. H., Gaillard, J.-M., Lackey, L. B., et al. (2010). Comparing life expectancy of three deer species between captive and wild populations. European Journal of Wildlife Research, 56, 205–8.CrossRefGoogle Scholar
Murie, A. (1944). The Wolves of Mount McKinley (Washington, DC: US Department Interior, National Park Service).Google Scholar
Mysterud, A., Yoccoz, N. G., Stenseth, N. C. & Langvatn, R. (2001). Effects of age, sex and density on body weight of Norwegian red deer: evidence of density-dependence. Proceedings of the Royal Society of London Series B: Biological Sciences, 268, 911–19.CrossRefGoogle Scholar
Mysterud, A., Meisingset, E., Langvatn, R., et al. (2005). Climate-dependent allocation of resources to secondary sexual traits in red deer. Oikos, 111, 245–52.CrossRefGoogle Scholar
Neuhaus, P. & Pelletier, N. (2001). Mortality in relation to season, age, sex, and reproduction in Columbian ground squirrels (Spermophilus columbianus). Canadian Journal of Zoology, 79, 465–70.CrossRefGoogle Scholar
Nichols, J. D. (1992). Capture-recapture models. Bioscience, 42, 94102.CrossRefGoogle Scholar
Nishida, T., Corp, N., Hamai, M., et al. (2003). Demography, female life history, and reproductive profiles among the chimpanzees of Mahale. American Journal of Primatology, 59, 99121.CrossRefGoogle ScholarPubMed
Nussey, D. H., Kruuk, L. E. B., Morris, A. & Clutton-Brock, T. H. (2007). Environmental conditions in early life influence ageing rates in a wild population of red deer. Current Biology, 17, R1000–1.CrossRefGoogle Scholar
Nussey, D. H., Kruuk, L. E. B., Morris, A., et al. (2009a). Inter- and intrasexual variation in aging patterns across reproductive traits in a wild red deer population. American Naturalist, 174, 342–57.CrossRefGoogle Scholar
Nussey, D. H., Pemberton, J. M., Pilkington, J. G. & Blount, J. D. (2009b). Life history correlates of oxidative damage in a free-living mammal population. Functional Ecology, 23, 809–17.CrossRefGoogle Scholar
Nussey, D. H., Coulson, T., Delorme, D., et al. (2011). Patterns of body mass senescence and selective disappearance differ among three species of free-living ungulates. Ecology, 92, 1936–47.CrossRefGoogle ScholarPubMed
Nussey, D. H., Watt, K., Pilkington, J. G., et al. (2012). Age-related variation in immunity in a wild mammal population. Aging Cell, 11, 178–80.CrossRefGoogle Scholar
Nussey, D. H., Froy, H., Lemaitre, J. F., et al. (2013). Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology. Ageing Research Reviews, 12, 214–25.CrossRefGoogle ScholarPubMed
Oleziuk, P. F., Bigg, M. A. & Ellis, G. M. (1990). Life history and population dynamics of resident killer whales (Orcinus orca) in the coastal waters of British Columbia and Washington State. Report of the International Whaling Commission, 12, 209–43.Google Scholar
Owen-Smith, N. (1990). Demography of a large herbivore, the greater kudu Tragelaphus strepsiceros, in relation to rainfall. Journal of Animal Ecology, 59, 893913.CrossRefGoogle Scholar
Packer, C., Tatar, M. & Collins, A. (1998). Reproductive cessation in female mammals. Nature, 392, 807–11.CrossRefGoogle ScholarPubMed
Paul, A., Kuester, J. & Podzuweit, D. (1993). Reproductive senescence and terminal investment in female Barbary macaques (Macaca sylvanus) at Salem. International Journal of Primatology, 14, 105–24.CrossRefGoogle Scholar
Péron, G., Gimenez, O., Charmantier, A., et al. (2010). Age at the onset of senescence in birds and mammals is predicted by early-life performance. Proceedings of the Royal Society of London Series B: Biological Sciences, 277, 28493285.Google ScholarPubMed
Péron, G., Gaillard, J.-M., Barbraud, C., Bonenfant, C., Charmantier, A., et al. (2016). Evidence of reduced heterogeneity in adult survival of long-lived species. Evolution 70, 29092914.CrossRefGoogle ScholarPubMed
Pielowski, Z. (1984). Some aspects of population structure and longevity of field roe deer. Acta Theriologica, 29, 1733.CrossRefGoogle Scholar
Proffitt, K. M., Garrott, R. A., Rotella, J. J. & Wheatley, K. E. (2007). Environmental and senescent related variations in Weddell seal body mass: implications for age-specific reproductive performance. Oikos, 116, 1683–90.Google Scholar
Promislow, D. E. L. (1991). Senescence in natural populations of mammals: a comparative study. Evolution, 45, 1869–87.CrossRefGoogle ScholarPubMed
Promislow, D. E. L. & Harvey, P. H. (1990). Living fast and dying young: a comparative analysis of life-history variation among mammals. Journal of Zoology, 220, 417–37.CrossRefGoogle Scholar
Promislow, D. E. L., Fedorka, K. M. & Burger, J. M. S. (2006). Evolutionary biology of aging: future directions. In Handbook of the Biology of Aging, eds. Masoro, E. J. & Austad, S. N (pp. 217–42). (Burlington, MA: Academic Press).Google Scholar
Pyne, M. I., Byrne, K. M., Holfelder, K. A., et al. (2010). Survival and breeding transitions for a reintroduced bison population: a multistate approach. Journal of Wildlife Management, 74, 1463–71.CrossRefGoogle Scholar
Richard, A. F., Dewar, R. E., Schwartz, M. & Ratsirarson, J. (2002). Life in the slow lane? Demography and life histories of male and female sifaka (Propithecus verreauxi verreauxi). Journal of Zoology, 256, 421–36.CrossRefGoogle Scholar
Ricklefs, R. E. (2010). Life-history connections to rates of aging in terrestrial vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 107, 10314–19.Google ScholarPubMed
Robbins, A. M., Robbins, M. M., Gerald-Steklis, N. & Steklis, H.D. (2006). Age-related patterns of reproductive success among female mountain gorillas. American Journal of Physical Anthropology, 131, 511–21.CrossRefGoogle ScholarPubMed
Robinson, M. R., Pilkington, J. G., Clutton-Brock, T. H., et al. (2006). Live fast, die young: trade-offs between fitness components and sexually antagonistic selection on weaponry in Soay sheep. Evolution, 60, 2168–81.Google ScholarPubMed
Robinson, M. R., Mar, K. U. & Lummaa, V. (2012). Senescence and age-specific trade-offs between reproduction and survival in female Asian elephants. Ecology Letters, 15, 260–6.CrossRefGoogle ScholarPubMed
Rotella, J. J., Link, W. A., Chambert, T., et al. (2012). Evaluating the demographic buffering hypothesis with vital rates estimated for Weddell seals from 30 years of mark-recapture data. Journal of Animal Ecology, 81, 162–73.CrossRefGoogle ScholarPubMed
Rodgers, W. A. (1984). Warthog ecology in South East Tanzania. Mammalia, 48, 327–50.CrossRefGoogle Scholar
Sacher, G. A. (1959). Relation of life span to brain weight and body weight in mammals. In The Lifespan of Animals (CIBA Foundation: Colloquia on Aging, Vol. 5, pp. 115–33) (Hoboken, NJ: Wiley).Google Scholar
Sadleir, R. M. F. S. (1969). The Ecology of Reproduction in Wild and Domestic Animals (London: Methuen).Google Scholar
Saltz, D. (1996). Minimizing extinction probability due to demographic stochasticity in a reintroduced herd of Persian fallow deer Dama dama mesopotamica. Biological Conservation, 75, 2733.CrossRefGoogle Scholar
Schwartz, C. C., Keating, K. A., Reynolds, H. V., et al. (2003). Reproductive maturation and senescence in the female brown bear. Ursus, 14, 109–19.Google Scholar
Seber, G. A. F. (1973). The Estimation of Animal Abundance and Related Parameters (London: Griffin).Google Scholar
Selman, C., Blount, J. D., Nussey, D. H. & Speakman, J. R. (2012). Oxidative damage, ageing, and life-history evolution: where now? Trends in Ecology and Evolution, 27, 570–7.CrossRefGoogle ScholarPubMed
Sharp, S. P. & Clutton-Brock, T. H. (2010). Reproductive senescence in a cooperatively breeding mammal. Journal of Animal Ecology, 79, 176–83.CrossRefGoogle Scholar
Sibly, R. M., Collett, D., Promislow, D. E. L., et al. (1997). Mortality rates of mammals. Journal of Zoology, 243, 112.CrossRefGoogle Scholar
Sierra, E., Fernandez, A., de los Monteros, A. E., et al. (2013). Muscular senescence in cetaceans: adaptation towards a slow muscle fibre phenotype. Scientific Reports, 3, 1795.CrossRefGoogle ScholarPubMed
Siler, W. (1979). Competing-risk model for animal mortality. Ecology, 60, 750–7.CrossRefGoogle Scholar
Sinclair, A. R. E. (1977). The Africa Buffalo: A Study of Resource Limitation of Populations (University of Chicago Press).Google Scholar
Slade, N. A. (1995). Failure to detect senescence in persistence of some grassland rodents. Ecology, 76, 863–70.CrossRefGoogle Scholar
Slade, N. A. & Balph, D. F. (1974). Population ecology of Uinta ground squirrels. Ecology, 55, 9891003.CrossRefGoogle Scholar
Smith, C. C. & Fretwell, S. D. (1974). Optimal balance between size and number of offspring. American Naturalist, 108, 499506.CrossRefGoogle Scholar
Sohal, R. S., Agarwal, S. & Sohal, B. H. (1995). Oxidative stress and aging in the Mongolian gerbil (Meriones unguiculatus). Mechanisms of Ageing and Development, 81, 1525.CrossRefGoogle ScholarPubMed
Spinage, C. A. (1972). African ungulates life tables. Ecology, 53, 645–52.CrossRefGoogle Scholar
Stadtman, E. R. (1992). Protein oxidation and aging. Science, 257, 1220–4.CrossRefGoogle ScholarPubMed
Stearns, S. C. (1983). The influence of size and phylogeny on patterns of covariation among life-history traits in the mammals. Oikos, 41, 173–87.CrossRefGoogle Scholar
Stearns, S. C. (1992). The Evolution of Life Histories (Oxford University Press).Google Scholar
Sugiyama, Y. (1994). Age-specific birth rate and lifetime reproductive success of chimpanzees at Bossou, Guinea. American Journal of Primatology, 32, 311–18.CrossRefGoogle ScholarPubMed
Sussman, R. W. (1991). Demography and social organization of free-ranging Lemur catta in the Beza-Mahafaly Reserve, Madagascar. American Journal of Physical Anthropology, 84, 4358.CrossRefGoogle Scholar
Sydeman, W. J., Huber, H. R., Emslie, S. D., et al. (1991). Age-specific weaning success of Northern elephant seals in relation to previous breeding experience. Ecology, 72, 2204–17.CrossRefGoogle Scholar
Tafani, M., Cohas, A., Bonenfant, C., et al. (2013). Decreasing litter size of marmots over time: a life history response to climate change? Ecology, 94, 580–6.CrossRefGoogle Scholar
Tettamanti, F., Grignolio, S., Filli, F., et al. (2015). Senescence in breeding success of Alpine chamois (Rupicapra rupicapra): the role of female quality and age. Oecologia, 178, 187–95.CrossRefGoogle ScholarPubMed
Thomas, D. C. & Barry, S. J. (1990). A life table for female barren-ground caribou in North Central Canada. Rangifer, 3, 177–84.Google Scholar
Thongtip, N., Saikhun, J., Mahasawangkul, S., et al. (2008). Potential factors affecting semen quality in the Asian elephant (Elephas maximus). Reproductive Biology and Endocrinology, 6, 9.CrossRefGoogle ScholarPubMed
Tidière, M., Gaillard, J.-M., Muller, D. W. H., et al. (2014). Males do not senesce faster in large herbivores with highly seasonal rut. Experimental Gerontology, 60, 167–72.CrossRefGoogle Scholar
Tinker, M. T., Doak, D. F., Estes, J. A., et al. (2006). Incorporating diverse data and realistic complexity into demographic estimation procedures for sea otters. Ecological Applications, 16, 22932312.CrossRefGoogle ScholarPubMed
Toïgo, C., Gaillard, J.-M., Gauthier, D., et al. (2002). Female reproductive success and costs in a temperate capital breeder: the effect of contrasting environmental conditions. Ecoscience, 9, 427–33.Google Scholar
Toïgo, C. & Gaillard, J.-M. (2003). Causes of sex-biased adult survival in ungulates: sexual size dimorphism, mating tactic or environmental harshness? Oikos, 101, 376–84.CrossRefGoogle Scholar
Toïgo, C., Gaillard, J.-M., van Laere, G., et al. (2006). How does environmental variation influence body mass, body size, and body condition? Roe deer as a case study. Ecography, 29, 301–8.CrossRefGoogle Scholar
Toïgo, C., Gaillard, J.-M., Festa-Bianchet, M., et al. (2007). Sex- and age-specific survival of the highly dimorphic alpine ibex: evidence for a conservative life-history tactic. Journal of Animal Ecology, 76, 679–86.CrossRefGoogle ScholarPubMed
Valcu, M., Dale, J., Griesser, M., Nakagawa, S. & Kempenaers, B. (2014). Global gradients of avian longevity support the classic evolutionary theory of ageing. Ecography, 37, 930–8.CrossRefGoogle Scholar
Van Noordwijk, A. J. & de Jong, G. (1986). Acquisition and allocation of resources: their influence on variation in life history tactics. American Naturalist, 128, 137–42.CrossRefGoogle Scholar
van de Pol, M. & Verhulst, S. (2006). Age-dependent traits: a new statistical model to separate within- and between-individual effects. American Naturalist, 167, 766–73.CrossRefGoogle ScholarPubMed
van de Pol, M. & Wright, J. (2009). A simple method for distinguishing within- versus between-subject effects using mixed models. Animal Behaviour, 77, 753–8.CrossRefGoogle Scholar
Vanpé, C., Gaillard, J.-M., Kjellander, P., et al. (2007). Antler size provides an honest signal of male phenotypic quality in roe deer. American Naturalist, 169, 481–93.CrossRefGoogle ScholarPubMed
Vanpé, C., Gaillard, J.-M., Kjellander, P., et al. (2010). Assessing the intensity of sexual selection on male body mass and antler length in roe deer Capreolus capreolus: is bigger better in a weakly dimorphic species? Oikos, 119, 1484–92.CrossRefGoogle Scholar
Vasilaki, A., McArdle, F., Iwanejko, L. M. & McArdle, A. (2006). Adaptive responses of mouse skeletal muscle to contractile activity: the effect of age. Mechanisms of Ageing and Development, 127, 830–9.CrossRefGoogle ScholarPubMed
Vaupel, J. W. & Yashin, A. I. (1985). Heterogeneity’s ruses: some surprising effects of selection on population dynamics. American Statistician, 39, 176–85.Google ScholarPubMed
Vincent, J. P., Angibault, J. M., Bideau, E. & Gaillard, J.-M. (1994). Problem of age determination: overlooked source of error in vertical life table calculations [in French]. Mammalia, 58, 293–9.Google Scholar
Walker, M. L., & Herndon, J. G. (2010). Mosaic aging. Medical Hypotheses, 74, 1048–51.CrossRefGoogle ScholarPubMed
Weladji, R. B., Loison, A., Gaillard, J.-M., et al. (2008). Heterogeneity in individual quality overrides costs of reproduction in female reindeer. Oecologia, 156, 237–47.CrossRefGoogle ScholarPubMed
Weladji, R. B., Holand, O., Gaillard, J.-M., et al. (2010). Age-specific changes in different components of reproductive output in female reindeer: terminal allocation or senescence? Oecologia, 162, 261–71.CrossRefGoogle ScholarPubMed
Whitehouse, A. M. & Hall-Martin, A. J. (2000). Elephants in Addo Elephant National Park, South Africa: reconstruction of the population’s history. Oryx, 34, 4655.CrossRefGoogle Scholar
Wilder, S. M., Le Couteur, D. G. & Simpson, S. J. (2013). Diet mediates the relationship between longevity and reproduction in mammals. Age, 35, 921–7.CrossRefGoogle ScholarPubMed
Williams, G. C. (1957). Pleiotropy, natural selection and the evolution of senescence. Evolution, 11, 398411.CrossRefGoogle Scholar
Williams, P. D., Day, T., Fletcher, Q. & Rowe, L. (2006). The shaping of senescence in the wild. Trends in Ecology and Evolution, 21, 458–63.CrossRefGoogle ScholarPubMed
Wilson, A. J. & Nussey, D. N. (2010). What is individual quality? An evolutionary perspective. Trends in Ecology and Evolution, 25, 207–14.CrossRefGoogle ScholarPubMed
Wilson, G. A., Olson, W. & Strobeck, C. (2002). Reproductive success in wood bison (Bison bison athabascae) established using molecular techniques. Canadian Journal of Zoology, 80, 1537–48.CrossRefGoogle Scholar
Wolfe, L. D. & Noyes, M. J. S. (1981). Reproductive senescence among female Japanese macaques (Macaca fuscata fuscata). Journal of Mammalogy, 62, 698705.CrossRefGoogle Scholar
Woolley, P. A. (1991). Reproduction in Dasykaluta rosamondae (Marsupiala, Dasyuridae): field and laboratory observations. Australian Journal of Zoology, 39, 549–68.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×