Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-25T04:53:08.576Z Has data issue: false hasContentIssue false

17 - The Costs and Benefits of Cognitive Control for Creativity

from Part V - Cognitive Control and Executive Functions

Published online by Cambridge University Press:  19 January 2018

Rex E. Jung
Affiliation:
University of New Mexico
Oshin Vartanian
Affiliation:
University of Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, A. (2013). The promises and perils of the neuroscience of creativity. Frontiers in Human Neuroscience, 7, 246. http://doi.org/10.3389/fnhum.2013.00246CrossRefGoogle ScholarPubMed
Abraham, A. (2014). Creative thinking as orchestrated by semantic processing versus cognitive control networks. Frontiers in Human Neuroscience, 8, 95.CrossRefGoogle Scholar
Andrews-Hanna, J. R., Reidler, J. S., Huang, C., & Buckner, R. L. (2010). Evidence for the default network’s role in spontaneous cognition. Journal of Neurophysiology, 104, 322335.CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., & Buckner, R. L. (2010). Functional–anatomic fractionation of the brain’s default network. Neuron, 65, 550562.CrossRefGoogle ScholarPubMed
Aron, A. R., Durston, S., Eagle, D. M., Logan, G. D., Stinear, C. M., & Stuphorn, V. (2007). Converging evidence for a frontobasal–ganglia network for inhibitory control of action and cognition. Journal of Neuroscience, 27, 1186011864. doi:10.1523/jneurosci.3644-07.2007CrossRefGoogle Scholar
Badre, D., & D’Esposito, M. (2009). Is the rostro-caudal axis of the frontal lobe hierarchical? Nature Reviews Neuroscience, 10, 659669. http://doi.org/10.1038/nrn2667CrossRefGoogle ScholarPubMed
Battleday, R. M., & Brem, A.-K. (2015). Modafinil for cognitive neuroenhancement in healthy non-sleep-deprived subjects: A systematic review. European Neuropsychopharmacology, 25, 135. http://doi.org/10.1016/j.euroneuro.2015.07.028CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Kaufman, S. B., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5, Article 10964. http://doi.org/10.1038/srep10964CrossRefGoogle Scholar
Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20, 8795.CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Wilkins, R. W., Jauk, E., Fink, A., Silvia, P. J., … Neubauer, A. C. (2014). Creativity and the default network: A functional connectivity analysis of the creative brain at rest. Neuropsychologia, 64, 9298. http://doi.org/10.1016/j.neuropsychologia.2014.09.019CrossRefGoogle ScholarPubMed
Beversdorf, D. Q. (2013). Pharmacological effects on creativity. In Vartanian, O., Bristol, A. S., & Kaufman, J. C. (Eds.), Neuroscience of creativity (pp. 151173). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Boccia, M., Piccardi, L., Palermo, L., Nori, R., & Palmiero, M. (2015). Where do bright ideas occur in our brain? Meta-analytic evidence from neuroimaging studies of domain-specific creativity. Frontiers in Psychology, 6, 1195. http://doi.org/10.3389/fpsyg.2015.01195CrossRefGoogle ScholarPubMed
Bressler, S. L., & Menon, V. (2010). Large-scale brain networks in cognition: Emerging methods and principles. Trends in Cognitive Sciences, 14, 277290. http://doi.org/10.1016/j.tics.2010.04.004CrossRefGoogle ScholarPubMed
Buckner, R. L., & Carroll, D. C. (2007). Self-projection and the brain. Trends in Cognitive Sciences, 11, 4957. http://doi.org/10.1016/j.tics.2006.11.004CrossRefGoogle ScholarPubMed
Bunge, S. A., Wendelken, C., Badre, D., & Wagner, A. D. (2005). Analogical reasoning and prefrontal cortex: Evidence for separable retrieval and integration mechanisms. Cerebral Cortex, 15, 239249. http://doi.org/10.1093/cercor/bhh126CrossRefGoogle ScholarPubMed
Chakravarty, A. (2011). De novo development of artistic creativity in Alzheimer’s disease. Annals of the Indian Academy of Neurology, 14, 291294. doi:10.4103/0972-2327.91953CrossRefGoogle ScholarPubMed
Chatterjee, A. (2006). The neuropsychology of visual art: Conferring capacity. International Review of Neurobiology, 74, 3949. doi:10.1016/s0074-7742(06)74003-xCrossRefGoogle ScholarPubMed
Chermahini, S. A., & Hommel, B. (2010). The (b)link between creativity and dopamine: Spontaneous eye blink rates predict and dissociate divergent and convergent thinking. Cognition, 115, 458465. http://doi.org/10.1016/j.cognition.2010.03.007CrossRefGoogle Scholar
Christoff, K., Gordon, A. M., Smallwood, J., Smith, R., & Schooler, J. W. (2009). Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proceedings of the National Academy of Sciences USA, 106(21), 87198724.CrossRefGoogle ScholarPubMed
Chrysikou, E. G. (2006). When shoes become hammers: Goal-derived categorization training enhances problem solving performance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32, 935942.Google ScholarPubMed
Chrysikou, E. G. (2014). Creative states: A cognitive neuroscience approach to understanding and improving creativity in design. In Gero, J. (Ed.), Studying Visual and Spatial Reasoning for Design Creativity (pp. 227243). New York, NY: Springer.Google Scholar
Chrysikou, E. G. (in press). Creativity. Stevens Handbook of Experimental Psychology and Neuroscience. New York, NY: Wiley.Google Scholar
Chrysikou, E. G., Hamilton, R. H., Coslett, H. B., Datta, A., Bikson, M., & Thompson-Schill, S. L. (2013). Non-invasive transcranial direct current stimulation over the left prefrontal cortex facilitates cognitive flexibility in tool use. Cognitive Neuroscience, 4, 8189.CrossRefGoogle Scholar
Chrysikou, E. G., Motyka, K., Nigro, C., Yang, S., & Thompson-Schill, S. L. (2016). Functional fixedness for object use in open-ended tasks depends on stimulus modality. Psychology of Aesthetics, Creativity, and the Arts, 10, 425435.CrossRefGoogle ScholarPubMed
Chrysikou, E. G., & Thompson-Schill, S. L. (2011). Dissociable brains states linked to common and creative object use. Human Brain Mapping, 32, 665675.CrossRefGoogle ScholarPubMed
Chrysikou, E. G., Weber, M., & Thompson-Schill, S. L. (2014). A matched filter hypothesis for cognitive control. Neuropsychologia, 62, 341355. doi:10.1016/j.neuropsychologia.2013.10.021.CrossRefGoogle ScholarPubMed
Cocchi, L., Zalesky, A., Fornito, A., & Mattingley, J. B. (2013). Dynamic cooperation and competition between brain systems during cognitive control. Trends in Cognitive Sciences, 17, 493501. http://doi.org/10.1016/j.tics.2013.08.006CrossRefGoogle ScholarPubMed
Deco, G., Jirsa, V. K., & McIntosh, A. R. (2013). Resting brains never rest: Computational insights into potential cognitive architectures. Trends in Neurosciences, 36, 268274. http://doi.org/10.1016/j.tins.2013.03.001CrossRefGoogle ScholarPubMed
Defeyter, M., & German, T. (2003). Acquiring an understanding of design: Evidence from children’s insight problem solving. Cognition, 89, 133155.CrossRefGoogle ScholarPubMed
De Luca, M., Beckmann, C. F., De Stefano, N., Matthews, P. M., & Smith, S. M. (2006). fMRI resting state networks define distinct modes of long-distance interactions in the human brain. NeuroImage, 29, 13591367.CrossRefGoogle ScholarPubMed
De Manzano, O., Cervenka, S., Karabanov, A., Fanke, L., & Ullen, F. (2010). Thinking outside a less intact box: Thalamic dopamine D2 receptor densities are negatively related to psychometric creativity in healthy individuals. PLoS ONE, 5, E10670.CrossRefGoogle ScholarPubMed
de Souza, L. C., Volle, E., Bertoux, M., Czernecki, V., Funkiewiez, A., Allali, G., … Habert, M.-O. (2010). Poor creativity in frontotemporal dementia: A window into the neural bases of the creative mind. Neuropsychologia, 48, 37333742.CrossRefGoogle ScholarPubMed
Dietrich, A. (2004). The cognitive neuroscience of creativity. Psychonomic Bulletin & Review, 11, 10111026.CrossRefGoogle ScholarPubMed
Dietrich, A. (2007a). The wavicle of creativity. Methods, 42, 12. http://doi.org/10.1016/j.ymeth.2007.03.006CrossRefGoogle ScholarPubMed
Dietrich, A. (2007b). Who’s afraid of a cognitive neuroscience of creativity? Methods, 42, 2227. http://doi.org/10.1016/j.ymeth.2006.12.009CrossRefGoogle ScholarPubMed
Dietrich, A., & Kanso, R. (2010). A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychological Bulletin, 136, 822848. http://doi.org/10.1037/a0019749CrossRefGoogle ScholarPubMed
Duff, M. C., Hengst, J. A., Tranel, D., & Cohen, N. J. (2009). Hippocampal amnesia disrupts verbal play and the creative use of language in social interaction. Aphasiology, 23, 926939. http://doi.org/10.1080/02687030802533748CrossRefGoogle ScholarPubMed
Duff, M. C., Kurczek, J., Rubin, R., Cohen, N. J., & Tranel, D. (2013). Hippocampal amnesia disrupts creative thinking. Hippocampus, 23, 11431149. http://doi.org/10.1002/hipo.22208CrossRefGoogle ScholarPubMed
Ellamil, M., Dobson, C., Beeman, M., & Christoff, K. (2012). Evaluative and generative modes of thought during the creative process. NeuroImage, 59, 17831794. http://doi.org/10.1016/j.neuroimage.2011.08.008CrossRefGoogle ScholarPubMed
Fink, A., & Benedek, M. (2014a). EEG alpha power and creative ideation. Neuroscience and Biobehavioral Reviews, 44, 111123.CrossRefGoogle ScholarPubMed
Fink, A., & Benedek, M. (2014b). The creative brain. In Vartanian, O., Bristol, A. S., & Kaufman, J. C. (Eds.), Neuroscience of creativity (pp. 207231). Cambridge, MA: MIT Press.Google Scholar
Fink, A., Grabner, R., Benedek, M., & Neubauer, A. (2006). Divergent thinking training is related to frontal electroencephalogram alpha synchronization. European Journal of Neuroscience, 23, 22412246. doi:10.1111/j. 1460–9568.2006.04751.xCrossRefGoogle ScholarPubMed
German, T. P., & Defeyter, M. A. (2000). Immunity to functional fixedness in young children. Psychonomic Bulletin & Review, 7, 707712.CrossRefGoogle ScholarPubMed
Green, A. E. (2016). Creativity, within reason: Semantic distance and dynamic state creativity in relational thinking and reasoning. Current Directions in Psychological Science, 25, 2835. http://doi.org/10.1177/0963721415618485CrossRefGoogle Scholar
Green, A. E., Cohen, M. S., Raab, H. I., Yedibalian, C. G., & Gray, J. R. (2015). Frontopolar activity and connectivity support dynamic conscious augmentation of creative state. Human Brain Mapping, 36, 923934. doi:10.1002/hbm.22676CrossRefGoogle ScholarPubMed
Green, A. E., Spiegel, K. A., Giangrande, E. J., Weinberger, A. B., Gallagher, N. M., & Turkeltaub, P. E. (2016). Thinking cap plus thinking zap: tDCS of frontopolar cortex improves creative analogical reasoning and facilitates conscious augmentation of state creativity in verb generation. Cerebral Cortex, 112. http://doi.org/10.1093/cercor/bhw080Google Scholar
Gonen-Yaacovi, G., de Souza, L. C., Levy, R., Urbanski, M., Josse, G., & Volle, E. (2013). Rostral and caudal prefrontal contribution to creativity: A meta-analysis of functional imaging data. Frontiers in Human Neuroscience, 7, 465. http://doi.org/10.3389/fnhum.2013.00465CrossRefGoogle ScholarPubMed
Gorno-Tempini, M. L., Hillis, A. E., Weintraub, S., Kertesz, A., Mendez, M., Cappa, S. F., … Grossman, M. (2011). Classification of primary progressive aphasia and its variants. Neurology, 76, 10071014.CrossRefGoogle ScholarPubMed
Greicius, M. D., Kiviniemi, V., Tervonen, O., Vainionpa, V., Alahuhta, S., Reiss, A. L., & Menon, V. (2008). Persistent default-mode network connectivity during light sedation. Human Brain Mapping, 29, 839847.CrossRefGoogle ScholarPubMed
Heaton, P., Ludlow, A., & Roberson, D. (2008). When less is more: Poor discrimination but good colour memory in autism. Research in Autism Spectrum Disorders, 2, 147156.CrossRefGoogle Scholar
Heilman, K. M., & Acosta, L. M. (2013). Visual artistic creativity and the brain. Progress in Brain Research, 204, 1943. doi:10.1016/b978-0-444-63287-6.00002-6.CrossRefGoogle ScholarPubMed
Hélie, S., & Sun, R. (2010). Incubation, insight, and creative problem solving: A unified theory and a connectionist model. Psychological Review, 117, 9941024. http://doi.org/10.1037/a0019532CrossRefGoogle Scholar
Jung, R. E., & Haier, R. J. (2013). Creativity and intelligence: Brain networks that link and differentiate the expression of genius. In Vartanian, O., Bristol, A. S., & Kaufman, J. C. (Eds.), Neuroscience of creativity (pp. 233254). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Jung, R. E., Mead, B. S., Carrasco, J., & Flores, R. A. (2013). The structure of creative cognition in the human brain. Frontiers in Human Neuroscience, 7, 330. http://doi.org/10.3389/fnhum.2013.00330/abstractCrossRefGoogle ScholarPubMed
Jung, R. E., Segall, J. M., Bockholt, H. J., Flores, F. R., Chavez, R. C., & Haier, R. J. (2009). Neuroanatomy of creativity. Human Brain Mapping, 31, 398408. doi:10.1002/hbm.20874CrossRefGoogle Scholar
Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition-timing hypothesis. Brain Research Reviews, 53, 6388. doi:10.1016/j.brainresrev.2006.06.003CrossRefGoogle ScholarPubMed
Kounios, J., & Beeman, M. (2014). The cognitive neuroscience of insight. Annual Review of Psychology, 65, 7193. http://doi.org/10.1146/annurev-psych-010213-115154CrossRefGoogle ScholarPubMed
Kounios, J., Frymiare, J. L., Bowden, E. M., Fleck, J. I., Subramaniam, K., Parrish, T. B., … Jung-Beeman, M. (2006). The prepared mind: Neural activity prior to problem presentation predicts subsequent solution by sudden insight. Psychological Science, 17, 882890.CrossRefGoogle ScholarPubMed
Laird, A. R., Fox, P. M., Price, C. J., Glahn, D. C., Uecker, A. M., Lancaster, J. L., … Fox, P. T. (2005). ALE meta-analysis, controlling the false discovery rate and performing statistical contrasts. Human Brain Mapping, 25, 155164. doi:10.1002/hbm.20136CrossRefGoogle ScholarPubMed
Limb, C., & Braun, A. (2008). Neural substrates of spontaneous musical performance: An fMRI study of jazz improvisation. PLoS ONE, 3, e1679. doi:10.1371/journal.pone.0001679CrossRefGoogle ScholarPubMed
Liu, S., Chow, H. M., Xu, Y, Erkkinen, M. G., Swett, K. E., Egle, M. W., … Braun, A. R. (2012). Neural correlates of lyrical improvisation: An fMRI study of freestyle rap. Scientific Reports, 2, 834.CrossRefGoogle ScholarPubMed
Lu, H., Zou, Q., Gu, H., Raichle, M. E., Stein, E. A., & Yang, Y. (2012). Rat brains also have a default mode network. Proceedings of the National Academy of Sciences USA, 109, 39793984.CrossRefGoogle ScholarPubMed
Lustenberger, C., Boyle, M. R., Foulser, A. A., Mellin, J. M., & Fröhlich, F. (2015). Functional role of frontal alpha oscillations in creativity. Cortex, 67, 7482.CrossRefGoogle ScholarPubMed
Madore, K. P., Addis, D. R., & Schacter, D. L. (2015). Creativity and memory: Effects of an episodic-specificity induction on divergent thinking. Psychological Science, 26, 14611468. http://doi.org/10.1177/0956797615591863CrossRefGoogle ScholarPubMed
Mayseless, N., Eran, A., & Shamay-Tsoory, S. G. (2015). Generating original ideas: The neural underpinning of originality. NeuroImage, 116(C), 232239.CrossRefGoogle ScholarPubMed
McCaffrey, T. (2012). Innovation relies on the obscure: A key to overcoming the classic problem of functional fixedness. Psychological Science, 23, 215218. http://doi.org/10.1177/0956797611429580CrossRefGoogle ScholarPubMed
Mehta, R., & Zhu, R. (2009). Blue or red? Exploring the effect of color on cognitive task performances. Science, 323, 12261229. http://doi.org/10.1126/science.1169144CrossRefGoogle ScholarPubMed
Midorikawa, A., & Kawamura, M. (2015). The emergence of artistic ability following traumatic brain injury. Neurocase, 21, 9094. doi:10.1080/13554794.2013.873058.CrossRefGoogle ScholarPubMed
Miller, B. L., Cummings, J., Mishkin, F., Boone, K., Prince, F., Ponton, M., & Cotman, C. (1998). Emergence of artistic talent in frontotemporal dementia. Neurology, 51, 978981. doi:10.1212/wnl.51.4.978CrossRefGoogle ScholarPubMed
Miller, B. L., & Hou, C. E. (2004). Portraits of artists: Emergence of visual creativity in dementia. Archives of Neurology, 61, 842844. doi:10.1001/archneur.61. 6.842CrossRefGoogle ScholarPubMed
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167202.CrossRefGoogle ScholarPubMed
Midorikawa, A., & Kawamura, M. (2014). The emergence of artistic ability following traumatic brain injury. Neurocase, 21, 9094. doi:10.1080/13554794.2013.873058.CrossRefGoogle ScholarPubMed
Mohamed, A. D., & Lewis, C. R. (2014). Modafinil increases the latency of response in the Hayling sentence completion test in healthy volunteers: A randomised controlled trial. PLoS ONE, 9, e110639. http://doi.org/10.1371/journal.pone.0110639.s002CrossRefGoogle ScholarPubMed
Mölle, M., Marshall, , Wolf, L., Fehm, B., , H. L., & Born, J. (1999). EEG complexity and performance measures of creative thinking. Psychophysiology, 36, 95104.CrossRefGoogle ScholarPubMed
Nimchinsky, E. A., Gilissen, E., Allman, J. M., Perl, D. P., Erwin, J. M., & Hof, P. R. (1999). A neuronal morphologic type unique to humans and great apes. Proceedings of the National Academy of Sciences USA, 96, 52685273.CrossRefGoogle ScholarPubMed
Pinho, A. L., de Manzano, O., Fransson, P., Eriksson, H., & Ullén, F. (2014). Connecting to create: Expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas. Journal of Neuroscience, 34, 61566163. http://doi.org/10.1523/JNEUROSCI.4769-13.2014CrossRefGoogle ScholarPubMed
Pinho, A. L., Ullén, F., Castelo-Branco, , Fransson, M., , P., & de Manzano, Ö. (2016). Addressing a paradox: Dual strategies for creative performance in introspective and extrospective networks. Cerebral Cortex, 26, 30523063. http://doi.org/10.1093/cercor/bhv130CrossRefGoogle ScholarPubMed
Popa, D., Popescu, A. T., & Pare, D. (2009). Contrasting activity profile of two distributed cortical networks as a function of attentional demands. Journal of Neuroscience, 29, 11911201.CrossRefGoogle ScholarPubMed
Pring, L., Ryder, N., Crane, L., & Hermlin, B. (2012). Creativity in savant artists with autism. Autism, 16, 4557. doi:10.1177/1362361311403783CrossRefGoogle ScholarPubMed
Radel, R., Davranche, K., Fournier, M., & Dietrich, A. (2015). The role of (dis)inhibition in creativity: Decreased inhibition improves idea generation. Cognition, 134, 110120.CrossRefGoogle ScholarPubMed
Raichle, M. E. (2015). The brain’s default mode network. Annual Review of Neuroscience, 38, 433447. http://doi.org/10.1146/annurev-neuro-071013-014030CrossRefGoogle ScholarPubMed
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences USA, 98, 676682.CrossRefGoogle ScholarPubMed
Raichle, M. E., & Mintun, M. A. (2006). Brain work and brain imaging. Annual Review of Neuroscience, 29, 449476.CrossRefGoogle ScholarPubMed
Ramey, C. H., & Chrysikou, E. G. (2014). “Not in their right mind”: The relation of psychopathology to the quantity and quality of creative thought. Frontiers in Psychology, 5, 835839. doi:10.3389/fpsyg.2014.00835CrossRefGoogle Scholar
Rankin, K. P., Liu, A. A., Howard, S. M., Slama, H., Hou, C. E., Shuster, K., & Miller, B. L. (2007). A case-controlled study of altered visual art production in Alzheimer’s and FTLD. Cognitive Behavioral Neurology, 20, 4861. doi:10.1097/wnn.0b013e31803141ddCrossRefGoogle ScholarPubMed
Reverberi, C., Toraldo, A., D’Agostini, S., & Skrap, M. (2005). Better without (lateral) frontal cortex? Insight problems solved by frontal patients. Brain, 128, 28822890.CrossRefGoogle ScholarPubMed
Ritter, S. M., Damian, R. I., Simonton, D. K., van Baaren, R. B., Strick, M., Derks, J., & Dijksterhuis, A. (2012). Diversifying experiences enhance cognitive flexibility. Journal of Experimental Social Psychology, 48, 961964. http://doi.org/10.1016/j.jesp.2012.02.009CrossRefGoogle Scholar
Sacks, O. (2004). Autistic geniuses? We’re too ready to pathologize. Nature, 429, 241. doi:10.1038/429241cCrossRefGoogle ScholarPubMed
Salvi, C., Bricolo, E., Franconeri, S., Kounios, J., & Beeman, M. (2015). Sudden insight is associated with shutting out visual inputs. Psychonomic Bulletin & Review, 22, 18141819.CrossRefGoogle ScholarPubMed
Schott, G. D. (2012). Pictures as a neurological tool: Lessons from enhanced and emergent artistry in brain disease. Brain, 135, 19471963. doi:10.1093/brain/awr314CrossRefGoogle ScholarPubMed
Seeley, W. W., Matthews, B. R., Crawford, R. K., Gorno-Tempini, M. L., Foti, D., Mackenzie, I. R., & Miller, B. L. (2008). Unravelling Boléro: Progressive aphasia, transmodal creativity and the right posterior neocortex. Brain, 131, 3949.CrossRefGoogle ScholarPubMed
Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., … Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27, 23492356. http://doi.org/10.1523/JNEUROSCI.5587-06.2007CrossRefGoogle ScholarPubMed
Shamay-Tsoory, S. G., Adler, N., Aharon-Peretz, J., Perry, D., & Mayseless, N. (2011). The origins of originality: The neural bases of creative thinking and originality. Neuropsychologia, 49, 178185.CrossRefGoogle ScholarPubMed
Shaw, P., Kabani, N. J., Lerch, J. P., Eckstrand, K., Lenroot, R., Gogtay, N., … Wise, S. P. (2008). Neurodevelopmental trajectories of the human cerebral cortex. Journal of Neuroscience, 28, 35863594.CrossRefGoogle ScholarPubMed
Shimamura, A. P. (2000). The role of the prefrontal cortex in dynamic filtering. Psychobiology, 28, 207218.CrossRefGoogle Scholar
Simis, M., Bravo, G. L., Boggio, P. S., Devido, M., Gagliardi, R. J., & Fregni, F. (2014). Transcranial direct current stimulation in de novo artistic ability after stroke. Neuromodulation, 17, 497501. doi:10.1111/ner.12140.CrossRefGoogle ScholarPubMed
Smith, S. M., Ward, T. B., & Finke, R. A. (Eds.) (1995). The creative cognition approach. Cambridge, MA: MIT Press.Google Scholar
Snyder, A. (2009). Explaining and inducing savant skills: Privileged access to lower level, less-processed information. Philosophical Transactions of the Royal Society B, 364, 13991405.CrossRefGoogle ScholarPubMed
Snyder, A., Bahramali, H., Hawker, T., & Mitchell, D. J. (2006) Savant-like numerosity skills revealed in normal people by magnetic pulses. Perception, 35, 837845.CrossRefGoogle ScholarPubMed
Snyder, A., Mulcahy, E., Taylor, J. L., Mitchell, D. J., Sachdev, P., & Gandevia, S. C. (2003). Savant-like skills exposed in normal people by suppressing the left frontotemporal lobe. Journal of Integrative Neuroscience, 2, 149158.CrossRefGoogle Scholar
Spreng, R. N., Mar, R. A., & Kim, A. S. (2009). The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: A quantitative meta-analysis. Journal of Cognitive Neuroscience, 21, 489510.CrossRefGoogle Scholar
Stafford, J. M., Jarrett, B. R., Miranda-Dominguez, O., Mills, B. D., Cain, N., Mihalas, S., … Fair, D. A. (2014). Large-scale topology and the default mode network in the mouse connectome. Proceedings of the National Academy of Sciences USA, 111, 1874518750.CrossRefGoogle ScholarPubMed
Takeuchi, H., Taki, Y., Sassa, Y., Hashizumi, H., Sekiguchi, A., Fukushima, A., & Kawashima, R. (2010). White matter structures associated with creativity: Evidence from diffusion tensor imaging. NeuroImage, 51, 1118.CrossRefGoogle ScholarPubMed
Thompson-Schill, S. L., Ramscar, M., & Chrysikou, E. G. (2009). Cognition without control: When a little frontal lobe goes a long way. Current Directions in Psychological Science, 18, 259263.CrossRefGoogle ScholarPubMed
Treffert, D. A. (2013). Savant syndrome: Realities, myths and misconceptions. Journal of Autism & Developmental Disorders, 44, 564571. doi:10.1007/s10803-013-1906-8CrossRefGoogle Scholar
Turkeltaub, P. E., Eickhoff, S. B., Laird, A. R., Fox, M., Wiener, M., & Fox, P. (2012). Minimizing within-experiment and within-group effects in Activation Likelihood Estimation meta-analyses. Human Brain Mapping, 33, 113. doi:10.1002/hbm.21186CrossRefGoogle ScholarPubMed
Vartanian, O., Bouak, F., & Caldwell, J. L., Cheung, B., Cupchik, G., Jobidon, M. E., … Smith, I. (2014). The effects of a single night of sleep deprivation on fluency and prefrontal cortex function during divergent thinking. Frontiers in Human Neuroscience, 8, 214. http://doi.org/10.3389/fnhum.2014.00214/abstractCrossRefGoogle ScholarPubMed
Vartanian, O., Martindale, C., & Kwiatkowski, J. (2007). Creative potential, attention, and speed of information processing. Personality and Individual Differences, 43, 14701480. http://doi.org/10.1016/j.paid.2007.04.027CrossRefGoogle Scholar
Vincent, J. L., Patel, G. H., Fox, M. D., Snyder, A. Z., Baker, J. T., Van Essen, D. C., … Raichle, M. E. (2007). Intrinsic functional architecture in the anaesthetized monkey brain. Nature, 447, 8386.CrossRefGoogle ScholarPubMed
Viskontas, I. V., & Miller, B. L. (2013). Art and dementia: How degeneration of some brain regions can lead to new creative impulses. In Vartanian, O., Bristol, A. S., & Kaufman, J. C. (Eds.), Neuroscience of creativity (pp. 115132). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Ward, T. B. (2007). Creative cognition as a window on creativity. Methods, 42, 2837. http://doi.org/10.1016/j.ymeth.2006.12.002CrossRefGoogle ScholarPubMed
Weinberger, A. B., Green, A., & Chrysikou, E. G. (2017). Using transcranial direct current stimulation to enhance creative cognition: Interactions between task, polarity, and stimulation site. Frontiers in Human Neuroscience, 11, 246.CrossRefGoogle ScholarPubMed
Weisberg, R. W. (2006). Creativity: Understanding innovation in problem solving, science, invention, and the arts. Hoboken, NJ: John Wiley & Sons.Google Scholar
Zabelina, D. L., & Andrews-Hanna, J. R. (2016). Dynamic network interactions supporting internally-oriented cognition. Current Opinion in Neurobiology, 40, 8693.CrossRefGoogle ScholarPubMed
Zabelina, D. L., & Robinson, M. D. (2010). Creativity as flexible cognitive control. Psychology of Aesthetics, Creativity, and the Arts, 4, 136143. http://doi.org/10.1037/a0017379CrossRefGoogle Scholar
Zaidel, D. W. (2014). Creativity, brain, and art: Biological and neurological considerations. Frontiers in Human Neuroscience, 8, 19. doi:10.3389/fnhum.2014.00389CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×