Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-16T20:36:43.657Z Has data issue: false hasContentIssue false

2 - Event-Related Brain Oscillations in Normal Development

from SECTION ONE - CENTRAL SYSTEM: THEORY, METHODS, AND MEASURES

Published online by Cambridge University Press:  27 July 2009

Juliana Yordanova
Affiliation:
Associate Professor of Psychophysiology Institute of Neurobiology, Bulgarian Academy of Sciences
Vasil Kolev
Affiliation:
Associate Professor of Physiology Institute of Neurobiology, Bulgarian Academy of Sciences
Louis A. Schmidt
Affiliation:
McMaster University, Ontario
Sidney J Segalowitz
Affiliation:
Brock University, Ontario
Get access

Summary

CONCEPTUAL FRAMEWORK

Recently, event-related neuroelectric oscillations have provided important tools with which to study information processing in the brain and with which to enrich our knowledge of brain maturation and cognitive development. The essential advantages of this approach are the ability to (1) analyze neuroelectric responses reflecting mechanisms of stimulus information processing in comparison to electrical activity in a passive state reflecting the neurobiological maturation of the brain; (2) refine electrophysiological correlates of information processing by separating functionally different but simultaneously generated responses from different frequency ranges; and (3) reveal differential developmental dynamics of the power and synchronization of neuroelectric responses, thus providing information about independent neurophysiological mechanisms during biological and cognitive development.

In this chapter, the conceptual background of event-related oscillations will be presented with a major focus on their relevance for developmental research, followed by methods, analytic tools, and parameters for assessment of event-related oscillations. Finally, major findings on the development of the delta, theta, alpha, and gamma response systems in the brain will be described.

EVENT-RELATED POTENTIALS

The electroencephalogram (EEG) is a time-varying signal reflecting the summated neuroelectric activity from various neural sources in the brain during rest or functional activation. An EEG response that occurs in association with an eliciting event (sensory or cognitive stimulus) is defined as an event-related potential (ERP). However, the ERP may contain EEG activity not related to specific event processing, as well as electric activity from non-neural sources.

Type
Chapter
Information
Developmental Psychophysiology
Theory, Systems, and Methods
, pp. 15 - 68
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ademoglu, A., Micheli-Tzanakou, E., & Istefanopulos, Y. (1997). Analysis of pattern reversal visual evoked potentials (PRVEP's) by spline wavelets. IEEE Transactions on Biomedical Engineering, 44, 881–890.CrossRefGoogle ScholarPubMed
Arieli, A., Shoham, D., Hildesheim, R., & Grinvald, A. (1995). Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex. Journal of Neurophysiology, 73, 2072–2093.CrossRefGoogle ScholarPubMed
Basar, E. (1980). EEG-brain dynamics. Relation between EEG and brain evoked potentials. Amsterdam: Elsevier.Google Scholar
Basar, E. (1992). Brain natural frequencies are causal factors for resonances and induced rhythms. In Basar, E., & Bullock, T. H., (Eds.), Induced rhythms in the brain. (pp. 425–467). Boston: Birkhäuser.CrossRefGoogle Scholar
Basar, E. (1998). Brain Function and Oscillations. In Haken, H. (Ed.), Volume I. Brain Oscillations. Principles and Approaches. Springer Series in Synergetics. Berlin: Springer.Google Scholar
Basar, E., Basar-Eroglu, C., Karakas, S., & Schürmann, M. (2000). Brain oscillations in perception and memory. International Journal of Psychophysiology, 35, 95–124.CrossRefGoogle ScholarPubMed
Basar, E., Hari, R., Lopes da Silva, F. H., & Schürmann, M. (Eds.). (1997a). Brain alpha activity – new aspects and functional correlates [Special Issue]. International Journal of Psychophysiology, 26.Google Scholar
Basar, E., Rosen, B., Basar-Eroglu, C., & Greitschus, F. (1987). The associations between 40 Hz-EEG and the middle latency response of the auditory evoked potential. International Journal of Neuroscience, 33, 103–117.CrossRefGoogle ScholarPubMed
Basar, E., Yordanova, J., Kolev, V., & Basar-Eroglu, C. (1997b). Is the alpha rhythm a control parameter for brain responses?Biological Cybernetics, 76, 471–480.Google Scholar
Basar-Eroglu, C., Basar, E., Demiralp, T., & Schürmann, M. (1992). P300-response: possible psychophysiological correlates in delta and theta frequency channels. A review. International Journal of Psychophysiology, 13, 161–179.CrossRefGoogle ScholarPubMed
Basar-Eroglu, C., Kolev, V., Ritter, B., Aksu, F., & Basar, E. (1994). EEG, auditory evoked potentials and evoked rhythmicities in three-year-old children. International Journal of Neuroscience, 75, 239–255.CrossRefGoogle ScholarPubMed
Basar-Eroglu, C., Struber, D., Schürmann, M., Stadler, M., & Basar, E. (1996). Gamma-band responses in the brain: A short review of psychophysiological correlates and functional significance. International Journal of Psychophysiology, 24, 101–112.CrossRefGoogle Scholar
Bertrand, O., & Pantev, C. (1994). Stimulus-frequency dependence of the transient oscillatory auditory evoked responses (40 Hz) studied by electric and magnetic recordings in human. In Pantev, C., Elbert, T., & Lütkenhöner, B., (Eds.), Oscillatory event-related brain dynamics (NATO ASISeries, Vol. 271). (pp. 231–242). New York: Plenum Press.CrossRefGoogle Scholar
Brandt, M., Jansen, B., & Carbonari, J. (1991). Pre-stimulus spectral EEG patterns and the visual evoked response. Electroencephalography and Clinical Neurophysiology, 80, 16–20.CrossRefGoogle ScholarPubMed
Caplan, J. B., Madsen, J. R., Schulze-Bonhage, A., Aschenbrenner-Scheibe, R., Newman, E. L., & Kahana, M. J. (2003). Human theta oscillations related to sensorimotor integration and spatial learning. Journal of Neuroscience, 23, 4726–4736.CrossRefGoogle ScholarPubMed
Courchesne, E. (1983). Cognitive components of the event-related potential: Changes associated with development. In Gaillard, A. W. K., & Ritter, W., (Eds.), Tutorials in event-related potential research: Endogenous components. (pp. 329–344). Amsterdam: North-Holland.Google Scholar
Demiralp, T., & Basar, E. (1992). Theta rhythmicities following expected visual and auditory targets. International Journal of Psychophysiology, 13, 147–160.CrossRefGoogle ScholarPubMed
Demiralp, T., Yordanova, J., Kolev, V., Ademoglu, A., Devrim, M., & Samar, V. J. (1999). Time-frequency analysis of single-sweep event-related potentials by means of fast wavelet transform. Brain and Language, 66, 129–145.CrossRefGoogle ScholarPubMed
Fein, G., & Turetsky, B. (1989). P300 latency variability in normal elderly: Effects of paradigm and measurement technique. Electroencephalography and Clinical Neurophysiology, 72, 384–394.CrossRefGoogle ScholarPubMed
Ford, J., White, P., Lim, K., & Pfefferbaum, A. (1994). Schizophrenics have fewer and smaller P300s: A single-trial analysis. Biological Psychiatry, 35, 96–103.CrossRefGoogle ScholarPubMed
Galambos, R. (1992). A comparison of certain gamma band (40-Hz) brain rhythms in cat and man. In Basar, E., & Bullock, T. H., (Eds.), Induced rhythms in the brain (pp. 201–216). Boston: Birkhäuser.CrossRefGoogle Scholar
Gasser, T., Verleger, R., Bächer, P., & Sroka, L. (1988). Development of EEG of school-age children and adolescents. I. Analysis of band power. Electroencephalography and Clinical Neurophysiology, 69, 91–99.CrossRefGoogle ScholarPubMed
Gevins, A. (1987). Overview of computer analysis. In Gevins, A. S., & Rémond, A., (Eds.), Methods of analysis of brain electrical and magnetic signals. EEG handbook (revised series, Vol., pp. 31–83). Amsterdam: Elsevier.Google Scholar
Gruber, T., Mueller, M. M., Keil, A., & Elbert, T. (1999). Selective visual-spatial attention alters induced gamma band responses in the human EEG. Clinical Neurophysiology, 110, 2074–2085.CrossRefGoogle ScholarPubMed
Heinrich, H., Dickhaus, H., Rothenberger, A., Heinrich, V., & Moll, G. H. (1999). Single-sweep analysis of event-related potentials by wavelet networks: Methodological basis and clinical application. IEEE Transactions on Biomedical Engineering, 46, 867–879.CrossRefGoogle ScholarPubMed
Herrmann, C. S., & Knight, R. T. (2001). Mechanisms of human attention: Event-related potentials and oscillations. Neuroscience and Biobehavavioral Reviews, 25, 465–476.CrossRefGoogle ScholarPubMed
Inouye, T., Shinosaki, K., Iyama, A., Matsumoto, Y., & Toi, S. (1994). Moving potential field of frontal midline theta activity during a mental task. Cognitive Brain Research, 2, 87–92.CrossRefGoogle ScholarPubMed
Jensen, O., Gelfand, J., Kounios, J., & Lisman, J. E. (2002). Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cerebral Cortex, 12, 877–882.CrossRefGoogle Scholar
Jervis, B. W., Nichols, M. J., Johnson, T. E., Allen, E., & Hudson, N. R. (1983). A fundamental investigation of the composition of auditory evoked potentials. IEEE Transactions on Biomedical Engineering, BME-30, 43–49.CrossRefGoogle Scholar
John, E. R., Ahn, H., Prichep, L., Trepetin, M., Brown, D., & Kaye, H. (1980). Developmental equations for the electroencephalogram. Science, 210, 1255–1258.CrossRefGoogle ScholarPubMed
Jokeit, H., & Makeig, S. (1994). Different event-related patterns of gamma-band power in brain waves of fast- and slow-reacting subjects. Proceedings of the National Academy of Sciences of the USA, 91, 6339–6343.CrossRefGoogle ScholarPubMed
Kahana, M. J., Seelig, D., & Madsen, J. R. (2001). Theta returns. Current Opinion in Neurobiology, 11, 739–744.CrossRefGoogle ScholarPubMed
Kalcher, J., & Pfurtscheller, G. (1995). Discrimination between phase-locked and non-phase-locked event-related EEG activity. Electroencephalography and Clinical Neurophysiology, 94, 381–384.CrossRefGoogle ScholarPubMed
Klimesch, W. (1997). EEG-alpha rhythms and memory processes. International Journal of Psychophysiology, 26, 319–340.CrossRefGoogle ScholarPubMed
Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29, 169–195.CrossRefGoogle ScholarPubMed
Klimesch, W., Doppelmayr, M., Russeger, H., & Pachinger, T. (1996). Theta band power in the human scalp EEG and the encoding of new information. NeuroReport, 7, 1235–1240.CrossRefGoogle ScholarPubMed
Klimesch, W., Schimke, H., & Schwaiger, J. (1994). Episodic and semantic memory: An analysis in the EEG theta and alpha band. Electroencephalography and Clinical Neurophysiology, 91, 428–441.CrossRefGoogle ScholarPubMed
Kolev, V., Basar-Eroglu, C., Aksu, F., & Basar, E. (1994a). EEG rhythmicities evoked by visual stimuli in three-year-old children. International Journal of Neuroscience, 75, 257–270.CrossRefGoogle Scholar
Kolev, V., Demiralp, T., Yordanova, J., Ademoglu, A., & Isoglu-Alkaç, Ü. (1997). Time-frequency analysis reveals multiple functional components during oddball P300. NeuroReport, 8, 2061–2065.CrossRefGoogle ScholarPubMed
Kolev, V., & Schürmann, M. (1992). Event-related prolongation of induced EEG rhythmicities in experiments with a cognitive task. International Journal of Neuroscience, 67, 199–213.CrossRefGoogle ScholarPubMed
Kolev, V., & Yordanova, J. (1995). Delta responses in auditory brain potentials during passive and task conditions. In Elsner, N., & Menzel, R., (Eds.), Proceedings of the 23rd Göttingen Neurobiology Conference 1995 (Vol. II, p. 324).Google Scholar
Kolev, V., & Yordanova, J. (1997). Analysis of phase-locking is informative for studying event-related EEG activity. Biological Cybernetics, 76, 229–235.CrossRefGoogle ScholarPubMed
Kolev, V., Yordanova, J., Basar-Eroglu, C., & Basar, E. (2002). Age effects on visual EEG responses reveal distinct frontal alpha networks. Clinical Neurophysiology, 113, 901–910.CrossRefGoogle ScholarPubMed
Kolev, V., Yordanova, J., & Silyamova, V. (1994b). The relation between the endogenous P3 wave and evoked frequency components in children. Journal of Psychophysiology, 3, 277.Google Scholar
Krause, C. M., Lang, A. H., Laine, M., Kuusisto, M., & Porn, B. (1996). Event-related EEG desynchronization and synchronization during an auditory memory task. Electroencephalography and Clinical Neurophysiology, 98, 319–326.CrossRefGoogle ScholarPubMed
Krause, C. M., Sillanmaki, L., Koivisto, M., Saarela, C., Haggqvist, A., Laine, M., & Hamalainen, H. (2000). The effects of memory load on event-related EEG desynchronization and synchronization. Clinical Neurophysiology, 111, 2071–2078.CrossRefGoogle ScholarPubMed
Kurtzberg, D., Vaughan, H. Jr., Courchesne, E., Friedman, D., Harter, M. R., & Putnam, L. (1984). Developmental aspects of event-related potentials. Annals of the New York Academy of Sciences, 425, 300–318.CrossRefGoogle ScholarPubMed
Ladish, C., & Polich, J. (1989). P300 and probability in children. Journal of Experimental Child Psychology, 48, 212–223.CrossRefGoogle ScholarPubMed
Lang, M., Lang, W., Diekmann, V., & Kornhuber, H. H. (1989). The frontal theta rhythm indicating motor and cognitive learning. In Johnson, R. Jr., Rohrbaugh, J., & Parasuraman, R., (Eds.), Current Trends in Event-related Potential Research. Electroencephalography and Clinical Neurophysiology, Supplement 40. Amsterdam: Elsevier.Google Scholar
Lisman, J. E., & Idiart, M. A. (1995). Storage of 7 +/–2 short-term memories in oscillatory subcycles. Science, 267, 1512–1515.CrossRefGoogle Scholar
Llinás, R. (1988). The intrinsic electrophysiological properties of mammalian neurons: Insights into central nervous system function. Science, 242, 1654–1664.CrossRefGoogle ScholarPubMed
Llinás, R., & Ribary, U. (1993). Coherent 40-Hz oscillation characterizes dream state in humans. Proceedings of the National Academy of Sciences of the USA, 90, 2078–2081.CrossRefGoogle ScholarPubMed
Lopes da Silva, F. H. (1993). Dynamics of EEG as signals of neuronal populations: Models and theoretical considerations. In Niedermeyer, E., & Lopes da Silva, F. H., (Eds.), Electroencephalography: Basic principles, clinical applications, and related fields (3rd ed., pp. 63–77). Baltimore: Williams & Wilkins.Google Scholar
Lopes da Silva, F. H., Lierop, T. H., Schrijerr, C. F., & Storm van Leeuwen, W. (1973). Organization of thalamic and cortical alpha rhythms: Spectra and coherences. Electroencephalography and Clinical Neurophysiology, 35, 627–639.CrossRefGoogle Scholar
Madler, C., Keller, I., Schwender, D., & Pöppel, E. (1991). Sensory information processing during general anesthesia: Effects of isuflurane on auditory evoked neuronal oscillations. British Journal of Anesthesia, 66, 81–87.CrossRefGoogle ScholarPubMed
Makeig, S. (2002). Response: Event-related brain dynamics – unifying brain electrophysiology. Trends in Neurosciences, 25, 390.CrossRefGoogle ScholarPubMed
Makeig, S., Debener, S., Onton, J., & Delorme, A. (2004). Mining event-related brain dynamics. Trends in Cognitive Sciences, 8, 204–210.CrossRefGoogle ScholarPubMed
Matoušek, M., & Petersen, I. (1973). Frequency analysis of the EEG in normal children and in normal adolescents. In Kellaway, P., & Petersen, I., (Eds.), Automation of Clinical Electroencephalography (pp. 75–102). New York: Raven Press.Google Scholar
May, P., , H., Sinkkonen, J., & Näätänen, R. (1994). Long-term stimulation attenuates the transient 40-Hz response. NeuroReport, 5, 1918–1920.CrossRefGoogle ScholarPubMed
Michalewski, H. J., Prasher, D. K., & Starr, A. (1986). Latency variability and temporal interrelationships of the auditory event-related potentials (N1, P2, N2, and P3) in normal subjects. Electroencephalography and Clinical Neurophysiology, 65, 59–71.CrossRefGoogle Scholar
Miller, R. (1991). Cortico-hippocampal interplay and the representation of contexts in the Brain. Berlin: Springer.CrossRefGoogle Scholar
Mizuki, Y., Masotoshi, T., Isozaki, H., Nishijima, H., & Inanaga, K. (1980). Periodic appearance of theta rhythm in the frontal midline area during performance of a mental task. Electroencephalography and Clinical Neurophysiology, 49, 345–351.CrossRefGoogle ScholarPubMed
Mizuki, Y., Takii, O., Nishijima, H., & Inanaga, K. (1983). The relationship between the appearance of frontal midline theta activity (FmTheta) and memory function. Electroencephalography and Clinical Neurophysiology, 56, 56–56.Google Scholar
Mueller, M. M., Gruber, T., & Keil, A. (2000). Modulation of induced gamma band activity in the human EEG by attention and visual information processing. International Journal of Psychophysiology, 38, 283–299.CrossRefGoogle Scholar
Niedermeyer, E. (1993). Maturation of the EEG: Development of waking and sleep patterns. In Niedermeyer, E., & Lopes da Silva, F. H., (Eds.), Electroencephalography: Basic principles, clinical applications and related fields (pp. 167–191). Baltimore: Williams & Wilkins.Google Scholar
Niedermeyer, E. (1997). Alpha rhythms as physiological and abnormal phenomena. International Journal of Psychophysiology, 26, 31–49.CrossRefGoogle ScholarPubMed
Pantev, C., Elbert, T., & Lütkenhöner, B. (Eds.). (1994). Oscillatory event-related brain dynamics, NATO ASI Series. New York: Plenum.CrossRefGoogle Scholar
Pantev, C., Makeig, S., Hoke, M., Galambos, R., Hampson, S., & Gallen, C. (1991). Human auditory evoked gamma-band magnetic fields. Proceedings of the National Academy of Sciences of the USA, 88, 8996–9000.CrossRefGoogle ScholarPubMed
Petersén, I., & Eeg-Olofsson, O. (1971). The development of the electroencephalogram in normal children from the age of 1 through 15 years. Neuropädiatrie, 3, 247–304.CrossRefGoogle Scholar
Pfefferbaum, A., & Ford, J. M. (1988). ERPs to stimuli requiring response production and inhibition: Effects of age, probability and visual noise. Electroencephalography and Clinical Neurophysiology, 71, 55–63.CrossRefGoogle ScholarPubMed
Pfurtscheller, G., & Aranibar, A. (1977). Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroencephalography and Clinical Neurophysiology, 42, 817–826.CrossRefGoogle ScholarPubMed
Pfurtscheller, G., & Klimesch, W. (1992). Event-related synchronization and desynchronization of alpha and beta waves in a cognitive task. In Basar, E., & Bullock, T. H., (Eds.), Induced rhythms in the brain (pp. 117–128). Boston: Birkhäuser.CrossRefGoogle Scholar
Pfurtscheller, G., & Lopes da Silva, F. H. (1999). Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clinical Neurophysiology, 110, 1842–1857.CrossRefGoogle ScholarPubMed
Pfurtscheller, G., Neuper, C., & Krausz, G. (2000). Functional dissociation of lower and upper frequency mu rhythms in relation to voluntary limb movement. Clinical Neurophysiology, 111, 1873–1879.CrossRefGoogle ScholarPubMed
Piaget, J. (1969). Psychology of intellect. In Selected Studies in Psychology (pp. 55–232). Moscow: Mir (in Russian).Google Scholar
Picton, T. W., Bentin, S., Berg, P., Donchin, E., Hillyard, S. A., Johnson, R. Jr., Miller, G. A., Ritter, W., Ruchkin, D. S., Rugg, M. D., & Taylor, M. J. (2000). Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria. Psychophysiology, 37, 127–152.CrossRefGoogle ScholarPubMed
Picton, T. W., & Stuss, D. T. (1980). The component structure of the human event-related potentials. Progress in Brain Research, 54, 17–48.CrossRefGoogle ScholarPubMed
Polich, J. (1998). P300 clinical utility and control of variability. Journal of Clinical Neurophysiology, 15, 14–33.CrossRefGoogle ScholarPubMed
Regan, D. (1989). Human brain electrophysiology. Evoked potentials and evoked magnetic fields in science and medicine. Amsterdam: Elsevier.Google Scholar
Ridderinkhof, K. R., & Stelt, O. (2000). Attention and selection in the growing child: Views derived from developmental psychophysiology. Biological Psychology, 54, 55–106.CrossRefGoogle ScholarPubMed
Rosso, O. A., Blanco, S., Yordanova, J., Kolev, V., Figliola, A., Schürmann, M., & Basar, E. (2001). Wavelet Entropy: A new tool for analysis of short time brain electrical signals. Journal of Neuroscience Methods, 105, 65–75.CrossRefGoogle ScholarPubMed
Rothenberger, A. (Ed.). (1982). Event-related potentials in children. Amsterdam: Elsevier Biomedical Press.Google Scholar
Rothenberger, A. (1990). The role of the frontal lobes in child psychiatric disorders. In Rothenberger, A., (Ed.), Brain and behavior in child psychiatry (pp. 34–58). Berlin: Springer.CrossRefGoogle Scholar
Rothenberger, A. (1995). Electrical brain activity in children with Hyperkinetic Syndrome: Evidence of a frontal cortical dysfunction. In Sergeant, J., (Ed.), Eunethydis. European approaches to hyperkinetic disorder (pp. 225–270). Zürich: Trümpi.Google Scholar
Ruchkin, D. (1988). Measurement of event-related potentials: Signal extraction. In Picton, T., (Ed.), Human Event-Related Potentials. Handbook of EEG (revised series, Vol. 3, pp. 7–43). Amsterdam: Elsevier.Google Scholar
Samar, V. J., Bopardikar, A., Rao, R., & Swartz, K. (1999). Wavelet analysis of neuroelectric waveforms: A conceptual tutorial. Brain and Language, 66, 7–60.CrossRefGoogle ScholarPubMed
Samar, V. J., Swartz, K. P., & Raghuveer, M. R. (1995). Multiresolution analysis of event-related potentials by wavelet decomposition. Brain and Cognition, 27, 398–438.CrossRefGoogle ScholarPubMed
Sayers, B.Mc, A., Beagley, H. A., & Henshall, W. R. (1974). The mechanism of auditory evoked EEG responses. Nature, 247, 481–483.Google Scholar
Schiff, S. J., Aldroubi, A., Unser, M., & Sato, S. (1994). Fast wavelet transformation of EEG. Electroencephalography and Clinical Neurophysiology, 91, 442–455.CrossRefGoogle ScholarPubMed
Schürmann, M., & Basar, E. (1994). Topography of alpha and theta oscillatory responses upon auditory and visual stimuli in humans. Biological Cybernetics, 72, 161–174.CrossRefGoogle ScholarPubMed
Sinkkonen, J., Tiitinen, H., & Näätänen, R. (1995). Gabor filters: An informative way for analyzing event-related brain activity. Journal of Neuroscience Methods, 56, 99–104.CrossRefGoogle Scholar
Smulders, F. T. Y., Kenemans, J. L., & Kok, A. (1994). A comparison of different methods for estimating single-trial P300 latencies. Electroencephalography and Clinical Neurophysiology, 92, 107–114.CrossRefGoogle ScholarPubMed
Solodovnikov, V. V. (1960). Introduction to the statistical dynamics of automatic control systems. New York: Dover.Google Scholar
Stampfer, G. H., & Basar, E. (1985). Does frequency analysis lead to better understanding of human event-related potentials. International Journal of Neuroscience, 26, 181–196.CrossRefGoogle ScholarPubMed
Steriade, M., Jones, E. G., & Llinás, R. (1990). Thalamic oscillations and signaling. New York: John Wiley & Sons.Google Scholar
Takano, T., & Ogawa, T. (1998). Characterization of developmental changes in EEG gamma-band activity during childhood using the autoregressive model. Acta Paediatrica Japonica, 40, 446–452.CrossRefGoogle ScholarPubMed
Tallon-Baudry, C., & Bertrand, O. (1999). Oscillatory gamma activity in humans and its role in object representation. Trends in Cognitive Sciences, 3, 151–162.CrossRefGoogle ScholarPubMed
Tallon-Baudry, C., Bertrand, O., Delpuech, C., & Permier, J. (1997). Oscillatory gamma-band (30–70 Hz) activity induced by a visual search task in humans. Journal of Neuroscience, 17, 722–734.CrossRefGoogle ScholarPubMed
Tallon-Baudry, C., Bertrand, O., Peronnet, F., & Pernier, J. (1998). Induced gamma-band activity during the delay of a visual short-term memory task in humans. Journal of Neuroscience, 18, 4244–4254.CrossRefGoogle ScholarPubMed
Taylor, M. J. (1989). Developmental changes in ERPs to visual language stimuli. In Renault, B., Kutas, M., Coles, M. G. H., Gaillard, A. W. K., (Eds.), Event-related potential investigations of cognition (pp. 321–338). Amsterdam: North-Holland.Google Scholar
Tiitinen, H., Sinkkonen, J., Reinikainen, K.Alho, K., Lavikainen, J., & Näätänen, R. (1993). Selective attention enhances the auditory 40-Hz transient response in humans. Nature, 364, 59–60.CrossRefGoogle ScholarPubMed
Traub, R. D., Jefferys, J. G. R., & Whittington, M. A. (1999). Fast oscillations in cortical circuits. Cambridge, MA: MIT Press.Google Scholar
Unsal, A., & Segalowitz, S. (1995). Sources of P300 attenuation after head injury: Single-trial amplitude, latency jitter, and EEG power. Psychophysiology, 32, 249–256.CrossRefGoogle ScholarPubMed
Wastell, D. G. (1979). The application of low-pass linear filters to evoked potential data: Filtering without phase distortion. Electroencephalography and Clinical Neurophysiology, 46, 355–356.CrossRefGoogle ScholarPubMed
Yordanova, J., Angelov, A., Silyamova, V., & Kolev, V. (1992). Auditory event-related potentials in children under passive listening to identical stimuli. Comptes rendus de l′Academie bulgare des Science, 45, 81–83.Google Scholar
Yordanova, J., Devrim, M., Kolev, V., Ademoglu, A., & Demiralp, T. (2000b). Multiple time-frequency components account for the complex functional reactivity of P300. NeuroReport, 11, 1097–1103.CrossRefGoogle Scholar
Yordanova, J., Dumais-Huber, C., Rothenberger, A., & Woerner, W. (1997a). Frontocortical activity in children with comorbidity of tic disorder and attention-deficit hyperactivity disorder. Biological Psychiatry, 41, 585–594.CrossRefGoogle Scholar
Yordanova, J., Falkenstein, M., Hohnsbein, J., & Kolev, V. (2004). Parallel systems of error processing in the brain. NeuroImage, 22, 590–602.CrossRefGoogle Scholar
Yordanova, J., & Kolev, V. (1996). Developmental changes in the alpha response system. Electroencephalography and Clinical Neurophysiology, 99, 527–538.CrossRefGoogle ScholarPubMed
Yordanova, J., & Kolev, V. (1997a). Developmental changes in the event-related EEG theta response and P300. Electroencephalography and Clinical Neurophysiology, 104, 418–430.CrossRefGoogle Scholar
Yordanova, J., & Kolev, V. (1997b). Alpha response system in children: Changes with age. International Journal of Psychophysiology, 26, 411–430.CrossRefGoogle Scholar
Yordanova, J., & Kolev, V. (1998a). A single-sweep analysis of the theta frequency band during an auditory oddball task. Psychophysiology, 35, 116–126.CrossRefGoogle Scholar
Yordanova, J., & Kolev, V. (1998b). Developmental changes in the theta response system: A single sweep analysis. Journal of Psychophysiology, 12, 113–126.Google Scholar
Yordanova, J., & Kolev, V. (1998c). Phase-locking of event-related EEG oscillations: Analysis and application. Applied Signal Processing, 5, 24–33.CrossRefGoogle Scholar
Yordanova, J, & Kolev, V. (2004). Error-specific signals in the brain: Evidence from a time-frequency decomposition of event-related potentials. In Ullsperger, M., & Falkenstein, M., (Eds.), Errors, Conflicts, and the Brain. Current Opinions on Performance Monitoring. MPI Special issue in human cognitive and brain sciences (vol. 1., pp. 35–41). Leipzig: MPI of Cognitive Neuroscience.Google Scholar
Yordanova, J., Kolev, V., & Basar, E. (1998). EEG theta and frontal alpha oscillations during auditory processing change with aging. Electroencephalography and Clinical Neurophysiology, 108, 497–505.CrossRefGoogle ScholarPubMed
Yordanova, J., Kolev, V., & Demiralp, T. (1997b). The phase-locking of auditory gamma band responses in humans is sensitive to task processing. NeuroReport, 8, 3999–4004.CrossRefGoogle Scholar
Yordanova, J., Kolev, V., Heinrich, H., Banaschewski, T., Woerner, W., & Rothenberger, A. (2000a). Gamma band response in children is related to task-stimulus processing. NeuroReport, 11, 2325–2330.CrossRefGoogle Scholar
Yordanova, J., Kolev, V., Heinrich, H., Woerner, W., Banaschewski, T., & Rothenberger, A. (2002). Developmental event-related gamma oscillations: Effects of auditory attention. European Journal of Neuroscience, 16, 2214–2224.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×