Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-28T22:24:46.997Z Has data issue: false hasContentIssue false

10 - Common maternal and neonatal conditions that may lead to neonatal brain imaging abnormalities

from Section III - Solving clinical problems and interpretation of test results

Published online by Cambridge University Press:  07 December 2009

Nicola J. Robertson
Affiliation:
Senior Lecturer in Neonatology and Honorary Consultant Neonatologist, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London Hospitals
Cornelia F. Hagmann
Affiliation:
Clinical Lecturer and Honorary Consultant Neonatologist, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London Hospitals
Janet M. Rennie
Affiliation:
Consultant and Senior Lecturer in Neonatal Medicine, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London Hospitals
Janet M. Rennie
Affiliation:
University College London
Cornelia F. Hagmann
Affiliation:
University College London
Nicola J. Robertson
Affiliation:
University College London
Get access

Summary

Introduction

The superb anatomical detail, gray–white matter differentiation, subtle volume differences, and metabolic information available from magnetic resonance studies of the newborn brain have revolutionized our understanding of the trajectory of normal development and the effect of prenatal and postnatal factors. It is increasingly recognized that an adverse prenatal or postnatal environment can have profound effects on the normal course of brain development, leading to long-term consequences in brain structure, behavior, cognition, and neurology.

This chapter is divided into three sections. The first section describes two common maternal conditions that may lead to neonatal cerebral injury. Being a twin, for example, may influence the trajectory of brain development merely by the sharing of a placenta and the effect of common placental anastomoses on the brain. Substance or alcohol abuse, an increasing problem in western countries, influences brain development in subtle ways; there has been much interest recently in the way that environmental influences acting during early development shape risk in later life. This is termed epigenetics and refers to the system of inheritance that does not involve changes in the primary DNA sequence but which can nevertheless be transmitted through cell lineages and can result in altered gene expression (for review see [1]). In the current era where brain magnetic resonance imaging (MRI) is possible in infants at risk, we are able to study the phenotypes of certain environmental influences.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cutfield, W, Hofman, P, Mitchell, M, Morison, I. Could epigenetics play a role in the developmental origins of health and disease?Pediatr Res 2007; 61 (5 pt 2): 68R–75R.CrossRefGoogle ScholarPubMed
Miller, S, McQuillen, P, Vigneron, Det al. Preoperative brain injury in newborns with transposition of the great arteries. Ann Thorac Surg. 2004 77 (5): 1698–706.CrossRefGoogle ScholarPubMed
Mercuri, E, Dubowitz, L, Brown, S, Cowan, F. Incidence of cranial ultrasound abnormalities in apparently well neonates on a postnatal ward: correlation with antenatal and perinatal factors and neurological status. Arch Dis Child Fetal Neonatal Ed 1998; 79 (3): F185–9.CrossRefGoogle ScholarPubMed
Wang, L, Huang, C, Yeh, T. Major brain lesions detected on sonographic screening of apparently normal term neonates. Neuroradiology 2004; 46: 368–73.Google ScholarPubMed
Looney, C, Smith, J, Merck, Let al. Intracranial hemorrhage in asymptomatic neonates: prevalence on MR images and relationship to obstetric and neonatal risk factors. Radiology 2007; 242 (2): 535–41.CrossRefGoogle ScholarPubMed
OPCS 1997 Birth Statistics. Review of the Register General on Births and Patterns of Family Building in England and Wales. London, HMSO, 1997.
Petterson, B, Nelson, K, Watson, L, Stanley, F. Twins, triplets, and cerebral palsy in births in Western Australia in the 1980s. Br Med J 1993; 307 (6914): 1239–43.CrossRefGoogle ScholarPubMed
Bajoria, R, Wee, L, Anwar, S, Ward, S. Outcome of twin pregnancies complicated by single intrauterine death in relation to vascular anatomy of the monochorionic placenta. Hum Reprod 1999; 14 (8): 2124–30.CrossRefGoogle ScholarPubMed
Bejar, R, Vigliocco, G, Gramajo, Het al. Antenatal origin of neurologic damage in newborn infants. II. Multiple gestations. Am J Obstet Gynecol 1990; 162 (5): 1230–6.CrossRefGoogle ScholarPubMed
Benirschke, K, Kim, C. Multiple pregnancy. 2. N Engl J Med 1973; 288 (25): 1329–36.CrossRefGoogle ScholarPubMed
Pharoah, P, Cooke, T. Cerebral palsy and multiple births. Arch Dis Child Fetal Neonatal Ed 1996; 75 (3): F174–7.CrossRefGoogle ScholarPubMed
Grafe, M. Antenatal cerebral necrosis in monochorionic twins. Pediatr Pathol 1993; 13 (1): 15–19.CrossRefGoogle ScholarPubMed
Adegbite, A, Castille, S, Ward, S, Bajoria, R. Prevalence of cranial scan abnormalities in preterm twins in relation to chorionicity and discordant birth weight. Eur J Obstet Gynecol Reprod Biol 2005; 119 (1): 47–55.CrossRefGoogle ScholarPubMed
Cheung, V, Bocking, A, Dasilva, O. Preterm discordant twins: what birth weight difference is significant?Am J Obstet Gynecol 1995; 172 (3): 955–9.CrossRefGoogle ScholarPubMed
Yinon, Y, Mazkereth, R, Rosentzweig, N, Jarus-Hakak, A, Schiff, E, Simchen, M. Growth restriction as a determinant of outcome in preterm discordant twins. Obstet Gynecol 2005; 105 (1): 80–4.CrossRefGoogle ScholarPubMed
Acosta-Rojas, R, Becker, J, Munoz-Abellana, Bet al. Twin chorionicity and the risk of adverse perinatal outcome. Int J Gynaecol Obstet 2007; 96 (2): 98–102.CrossRefGoogle ScholarPubMed
Dickinson, J, Duncombe, G, Evans, S, French, N, Hagan, R. The long term neurologic outcome of children from pregnancies complicated by twin-to-twin transfusion syndrome. Br J Obstet Gynaecol 2005; 112 (1): 63–8.CrossRefGoogle Scholar
Lemoine, P, Harrousseau, H, Borteyru, J, Menuet, J. Les infants des parents alcoholoques. Anomalies observées. A propos 127 cas. Ouest-Medical 1968; 25: 476–82.Google Scholar
Rosett, H. A clinical perspective of the Fetal Alcohol Syndrome. Alcohol Clin Exp Res 1980; 4 (2): 119–22.CrossRefGoogle ScholarPubMed
Autti-Rämö, I, Autti, T, Korkman, M, Kettunen, S, Salonen, O, Valanne, L. MRI findings in children with school problems who had been exposed prenatally to alcohol. Dev Med Child Neurol 2002; 44 (2): 98–106.CrossRefGoogle Scholar
Riley, E, McGee, C, Sowell, E. Teratogenic effects of alcohol: a decade of brain imaging. Am J Med Genet C Semin Med Genet 2004; 127 (1): 35–41.CrossRefGoogle Scholar
Archibald, S, Fennema-Notestine, C, Gamst, A, Riley, E, Mattson, S, Jernigan, T. Brain dysmorphology in individuals with severe prenatal alcohol exposure. Dev Med Child Neurol 2001; 43 (3): 148–54.CrossRefGoogle ScholarPubMed
Clark, C, Li, D, Conry, J, Conry, R, Loock, C. Structural and functional brain integrity of fetal alcohol syndrome in nonretarded cases. Pediatrics 2000; 105 (5): 1096–9.CrossRefGoogle ScholarPubMed
Bookstein, F, Connor, P, Huggins, J, Barr, H, Pimentel, K, Streissguth, A. Many infants prenatally exposed to high levels of alcohol show one particular anomaly of the corpus callosum. Alcohol Clin Exp Res 2007; 31 (5): 868–79.CrossRefGoogle ScholarPubMed
Wozniak, J, Mueller, B, Chang, P, Muetzel, R, Caros, L, Lim, K. Diffusion tensor imaging in children with fetal alcohol spectrum disorders. Alcohol Clin Exp Res 2006; 30 (10): 1799–806.CrossRefGoogle ScholarPubMed
King, T, Perlman, J, Laptook, A, Rollins, N, Jackson, G, Little, B. Neurologic manifestations of in utero cocaine exposure in near-term and term infants. Pediatrics 1995; 96 (2 Pt 1): 259–64.Google ScholarPubMed
Behnke, M, Eyler, F, Garvan, C, Wobie, K. The search for congenital malformations in newborns with fetal cocaine exposure. Pediatrics 2001; 107 (5): E74.CrossRefGoogle ScholarPubMed
Frank, D, McCarten, K, Robson, Cet al. Level of in utero cocaine exposure and neonatal ultrasound findings. Pediatrics 1999; 104 (5 Pt 1): 1101–5.CrossRefGoogle ScholarPubMed
Shankaran, S, Lester, BM, Das, Aet al. Impact of maternal substance use during pregnancy on childhood outcome. Semin Fetal Neonatal Med 2007; 12 (2): 143–50.CrossRefGoogle ScholarPubMed
Vannucci, R, Vannucci, S. Hypoglycemic brain injury. Semin Neonatol 2001; 6 (2): 147–55.CrossRefGoogle ScholarPubMed
Hawdon J. Metabolic disease: disorders of glucose homeostasis. In: Rennie, JM, ed. Roberton's Textbook of Neonatology, 4th edn. London, Elsevier Churchill Livingstone, 2005; 853–865.Google Scholar
Lucas, A, Morley, R, Cole, T. Adverse neurodevelopmental outcome of moderate neonatal hypoglycaemia. Br Med J 1988; 297 (6659): 1304–8.CrossRefGoogle ScholarPubMed
Hawdon, J, Platt, Ward M, Aynsley-Green, A. Patterns of metabolic adaptation for preterm and term infants in the first neonatal week. Arch Dis Child Fetal Neonatal Ed 1992; 67: 357–65.CrossRefGoogle ScholarPubMed
Eyre, J, Stuart, A, Forsyth, R, Heaviside, D, Bartlett, K. Glucose export from the brain in man: evidence for a role for astrocytic glycogen as a reservoir of glucose for neural metabolism. Brain Res Brain Res Rev 1994; 635 (1–2): 349–52.Google ScholarPubMed
Owen, O, Morgan, A, Kemp, H, Sullivan, J, Herrera, M, Cahill, G. Brain metabolism during fasting. J Clin Invest 1967; 46 (10): 1589–95.CrossRefGoogle ScholarPubMed
Hawkins, R, Williamson, D, Krebs, H. Ketone-body utilization by adult and suckling rat brain in vivo. Biochem J 1971; 122 (1): 13–18.CrossRefGoogle ScholarPubMed
Spitzer, J, Weng, J. Removal and utilization of ketone bodies by the brain of newborn puppies. J Neurochem 1972; 19 (9): 2169–73.CrossRefGoogle ScholarPubMed
Cremer, J, Cunningham, V, Pardridge, W, Braun, L, Oldendorf, W. Kinetics of blood–brain barrier transport of pyruvate, lactate and glucose in suckling, weanling and adult rats. J Neurochem 1979; 33 (2): 439–45.CrossRefGoogle ScholarPubMed
Hellmann, J, Vannucci, R, Nardis, E. Blood–brain barrier permeability to lactic acid in the newborn dog: lactate as a cerebral metabolic fuel. Pediatr Res 1982; 16 (1): 40–4.CrossRefGoogle ScholarPubMed
Rooy, L, Hawdon, J. Nutritional factors that affect the postnatal metabolic adaptation of full-term small- and large-for-gestational-age infants. Pediatrics 2002; 109 (3): E42.CrossRefGoogle ScholarPubMed
Kinnala, A, Suhonen-Polvi, H, Aärimaa, Tet al. Cerebral metabolic rate for glucose during the first six months of life: an FDG positron emission tomography study. Arch Dis Child Fetal Neonatal Ed 1996; 74 (3): F153–7.CrossRefGoogle Scholar
Anwar, M, Vannucci, R. Autoradiographic determination of regional cerebral blood flow during hypoglycemia in newborn dogs. Pediatr Res 1988; 24 (1): 41–5.CrossRefGoogle ScholarPubMed
Pryds, O, Greisen, G, Friis-Hansen, B. Compensatory increase of CBF in preterm infants during hypoglycaemia. Acta Paediatr Scand 1988; 77 (5): 632–7.CrossRefGoogle ScholarPubMed
Volpe J. Hypoglycaemia and brain injury. In: Volpe, J, ed. Neurology of the Newborn, 4th edn. Philadelphia, Saunders, 2001; 497–520.Google Scholar
Banker, BQ. The neuropathological effects of anoxia and hypoglycemia in the newborn. Dev Med Child Neurol 1967; 9 (5): 544–50.CrossRefGoogle ScholarPubMed
Anderson, J, Milner, R, Strich, S. Effects of neonatal hypoglycaemia on the nervous system: a pathological study. J Neurol Neurosurg Psychiatry 1967; 30 (4): 295–310.CrossRefGoogle ScholarPubMed
Meissner, T, Wendel, U, Burgard, P, Schaetzle, S, Mayatepek, E. Long-term follow-up of 114 patients with congenital hyperinsulinism. Eur J Endocrinol 2003; 149 (1): 43–51.CrossRefGoogle ScholarPubMed
Menni, F, Lonlay, P, Sevin, Cet al. Neurologic outcomes of 90 neonates and infants with persistent hyperinsulinemic hypoglycemia. Pediatrics 2001; 107 (3): 476–9.CrossRefGoogle ScholarPubMed
Glauser, T, Rorke, L, Weinberg, P, Clancy, R. Acquired neuropathologic lesions associated with the hypoplastic left heart syndrome. Pediatrics 1990; 85 (6): 991–1000.Google ScholarPubMed
Yager, J, Brucklacher, R, Vannucci, R. Cerebral oxidative metabolism and redox state during hypoxia-ischemia and early recovery in immature rats. Am J Physiol 1991; 261 (4(2)): H1102–8.Google ScholarPubMed
Koh, T, Eyre, J, Aynsley-Green, A. Neonatal hypoglycaemia – the controversy regarding definition. Arch Dis Child 1988; 63 (11): 1386–8.CrossRefGoogle ScholarPubMed
Kinnala, A, Rikalainen, H, Lapinleimu, H, Parkkola, R, Kormano, M, Kero, P. Cerebral magnetic resonance imaging and ultrasonography findings after neonatal hypoglycemia. Pediatrics 1999; 103 (4(1)): 724–9.CrossRefGoogle ScholarPubMed
Filan, P, Inder, T, Cameron, F, Kean, M, Hunt, R. Neonatal hypoglycemia and occipital cerebral injury. J Pediatr 2006; 148 (4): 552–5.CrossRefGoogle ScholarPubMed
Spar, J, Lewine, J, Orrison, W. Neonatal hypoglycemia: CT and MR findings. AJNR Am J Neuroradiol 1994; 15 (8): 1477–8.Google ScholarPubMed
Aslan, Y, Dinc, H. MR findings of neonatal hypoglycemia. AJNR Am J Neuroradiol 1997; 18 (5): 994–6.Google ScholarPubMed
Barkovich, A, Ali, F, Rowley, H, Bass, N. Imaging patterns of neonatal hypoglycemia. AJNR Am J Neuroradiol 1998; 19 (3): 523–8.Google ScholarPubMed
Traill, Z, Squier, M, Anslow, P. Brain imaging in neonatal hypoglycaemia. Arch Dis Child Fetal Neonatal Ed 1998; 79 (2): F145–7.CrossRefGoogle ScholarPubMed
Murakami, Y, Yamashita, Y, Matsuishi, T, Utsunomiya, H, Okudera, T, Hashimoto, T. Cranial MRI of neurologically impaired children suffering from neonatal hypoglycaemia. Pediatr Radiol 1999; 29 (1): 23–7.CrossRefGoogle ScholarPubMed
Cakmakci, H, Usal, C, Karabay, N, Kovanlikaya, A. Transient neonatal hypoglycemia: cranial US and MRI findings. Eur Radiol 2001; 11 (12): 2585–8.CrossRefGoogle ScholarPubMed
Caraballo, R, Sakr, D, Mozzi, Met al. Symptomatic occipital lobe epilepsy following neonatal hypoglycemia. Pediatr Neurol 2004; 31 (1): 24–9.CrossRefGoogle ScholarPubMed
Hamano, S, Tanaka, M, Mochizuki, M, Sugiyama, N, Eto, Y. Long-term follow-up study of West syndrome: differences of outcome among symptomatic etiologies. J Pediatr 2003; 143 (2): 231–5.CrossRefGoogle ScholarPubMed
Bhutani, VK JL, Sivieri, EM. Predictive ability of a predischarge hour-specific serum bilirubin for subsequent significant hyperbilirubinemia in healthy term and near-term newborns. Pediatrics 1999; 103 (1): 6–14.CrossRefGoogle ScholarPubMed
Smitherman, H, Stark, A, Bhutan, V. Early recognition of neonatal hyperbilirubinemia and its emergent management. Semin Fetal Neonatal Med 2006; 11 (3): 214–24.CrossRefGoogle ScholarPubMed
Fok, T. Neonatal jaundice – traditional Chinese medicine approach. J Perinatol 2001; 21(Suppl 1): S98–S100.CrossRefGoogle ScholarPubMed
Arkwright, J. A family series of fatal and dangerous cases of icterus neonatorum: fouteen cases in one family, with four survivors. Edin Med J 1902; 2: 156–8.Google Scholar
Cremer, R, Perryman, P, Richards, D. Influence of light on the hyperbilirubinaemia of infants. Lancet 1958; 1 (7030): 1094–7.CrossRefGoogle ScholarPubMed
Johnson, L, Brown, A, VK, B. BIND – a clinical score for bilirubin induced neurologic dysfunction in newborns. Pediatric Suppl 1999; 104: 746–7.Google Scholar
Doré, S, Snyder, S. Neuroprotective action of bilirubin against oxidative stress in primary hippocampal cultures. Ann N Y Acad Sci 1999; 890: 167–72.CrossRefGoogle ScholarPubMed
MacDonald, M. Hidden risks: early discharge and bilirubin toxicity due to glucose 6-phosphate dehydrogenase deficiency. Pediatrics 1995; 96 (4 (Pt 1)): 734–8.Google ScholarPubMed
Seidman, D, Paz, I, Stevenson, D, Laor, A, Danon, Y, Gale, R. Neonatal hyperbilirubinemia and physical and cognitive performance at 17 years of age. Pediatrics 1991; 88 (4): 828–33.Google ScholarPubMed
Nakamura, H, Yonetani, M, Uetani, Y, Funato, M, Lee, Y. Determination of serum unbound bilirubin for prediction of kernicterus in low birthweight infants. Acta Paediatr Jpn 1992; 34 (6): 642–7.CrossRefGoogle ScholarPubMed
Volpe J. Bilirubin and brain injury. In: Volpe, J, ed. Neurology of the Newborn. Philadelphia, Saunders, 2001; 521–46.Google Scholar
Vries, L, Lary, S, Dubowitz, L. Relationship of serum bilirubin levels to ototoxicity and deafness in high-risk low-birth-weight infants. Pediatrics 1985; 76 (3): 351–4.Google ScholarPubMed
Bhutani, V, Johnson, L. Kernicterus in late preterm infants cared for as term healthy infants. Semin Perinatol 2006; 30 (2): 89–97.CrossRefGoogle ScholarPubMed
Brodersen, R, Stern, L. Deposition of bilirubin acid in the central nervous system – a hypothesis for the development of kernicterus. Acta Paediatr Scand 1990; 79 (1): 12–19.CrossRefGoogle ScholarPubMed
Wennberg, R. The blood–brain barrier and bilirubin encephalopathy. Cell Mol Neurobiol 2000; 20 (1): 97–109.CrossRefGoogle ScholarPubMed
Ahab-Barmada, M. Hyperbilirubinaemia in the Newborn. Ohio, Ross, 1983.Google Scholar
Hansen, T. Bilirubin brain toxicity. J Perinatol 2001; 21(Suppl 1): S48–51.CrossRefGoogle ScholarPubMed
Ostrow, J, Pascolo, L, Brites, D, Tiribelli, C. Molecular basis of bilirubin-induced neurotoxicity. Trends Mol Med 2004; 10 (2): 65–70.CrossRefGoogle ScholarPubMed
Nakamura, H, Takada, S, Shimabuku, R, Matsuo, M, Matsuo, T, Negishi, H. Auditory nerve and brainstem responses in newborn infants with hyperbilirubinemia. Pediatrics 1985; 75 (4): 703–8.Google ScholarPubMed
Chen, Y, Kang, W. Effects of bilirubin on visual evoked potentials in term infants. Eur J Pediatr 1995; 154 (8): 662–6.CrossRefGoogle ScholarPubMed
Wennberg, R, Hance, A. Experimental bilirubin encephalopathy: importance of total bilirubin, protein binding, and blood-brain barrier. Pediatr Res 1986; 20 (8): 789–92.CrossRefGoogle ScholarPubMed
Gürses, D, Kiliç, I, Sahiner, T. Effects of hyperbilirubinemia on cerebrocortical electrical activity in newborns. Pediatr Res 2002; 52 (1): 125–30.CrossRefGoogle ScholarPubMed
Govaert, P, Lequin, M, Swarte, Ret al. Changes in globus pallidus with (pre)term kernicterus. Pediatrics 2003; 112 (6 Pt 1): 1256–63.CrossRefGoogle ScholarPubMed
Coskun, A, Yikilmaz, A, Kumandas, S, Karahan, O, Akcakus, M, Manav, A. Hyperintense globus pallidus on T1-weighted MR imaging in acute kernicterus: is it common or rare?Eur Radiol 2005; 15 (6): 1263–7.CrossRefGoogle ScholarPubMed
Okumura, A, Hayakawa, F, Kato, T, Itomi, K, Mimura, S, Watanabe, K. Preterm infants with athetoid cerebral palsy: kernicterus?Arch Dis Child Fetal Neonatal Ed 2001; 84 (2): F136–7.CrossRefGoogle ScholarPubMed
Sugama, S, Soeda, A, Eto, Y. Magnetic resonance imaging in three children with kernicterus. Pediatr Neurol 2001; 25 (4): 328–31.CrossRefGoogle ScholarPubMed
Penn, AA, Enzmann, DR, Hahn, JS, Stevenson, DK. Kernicterus in a full term infant. Pediatrics 1994; 93: 1003–5.Google Scholar
Yokochi, K. Magnetic resonance imaging in children with kernicterus. Acta Paediatr 1995; 84: 937–9.CrossRefGoogle ScholarPubMed
Martich-Kriss, V, Kollias, SS, , Ball WS. MR findings in kernicterus. Am J Neuroradiol 1995; 16: 819–21.Google ScholarPubMed
Worley, G, Erwin, CW, Goldstein, RF, Provenzale, JM, Ware, RE. Delayed development of sensorineural hearing loss after neonatal hyperbilirubinemia: a case report with brain magnetic resonance imaging. Dev Med Child Neurol 1996; 38: 271–8.CrossRefGoogle ScholarPubMed
Steinborn, M, Seelos, KC, Heuck, A, Voss, H, Reiser, M. MR findings in a patient with kernicterus. Eur Radiol 1999; 9 (9): 1913–15.CrossRefGoogle Scholar
Harris, MC, Bernbaum, JC, Polin, JR, Zimmerman, R, Polin, RA. Developmental follow-up of breastfed term and near-term infants with marked hyperbilirubinaemia. Pediatrics 2001; 107 (5): 1075–80.CrossRefGoogle Scholar
Yilmaz, Y, Ekinci, G. Thalamic involvement in a patient with kernicterus. Eur Radiol 2002; 12 (7): 1837–9.CrossRefGoogle Scholar
Groenendaal, F, Grond, J, Vries, L. Cerebral metabolism in severe neonatal hyperbilirubinemia. Pediatrics 2004; 114 (1): 291–4.CrossRefGoogle ScholarPubMed
Oakden, W, Moore, A, Blaser, S, Noseworthy, M. 1H MR spectroscopic characteristics of kernicterus: a possible metabolic signature. AJNR Am J Neuroradiol 2005; 26 (6): 1571–4.Google ScholarPubMed
Yokochi, K, Aiba, K, Kodama, M, Fujimoto, S. Magnetic resonance imaging in athetotic cerebral palsied children. Acta Paediatr Scand 1991; 80 (8–9): 818–23.CrossRefGoogle ScholarPubMed
Bellinger, D, Wypij, D, duDuplessis, Aet al. Neurodevelopmental status at eight years in children with dextro-transposition of the great arteries: the Boston Circulatory Arrest Trial. J Thorac Cardiovasc Surg 2003; 126 (5): 1385–96.CrossRefGoogle ScholarPubMed
Hövels-Gürich, H, Konrad, K, Skorzenski, Det al. Long-term neurodevelopmental outcome and exercise capacity after corrective surgery for tetralogy of Fallot or ventricular septal defect in infancy. Ann Thorac Surg 2006; 81 (3): 958–66.CrossRefGoogle ScholarPubMed
Limperopoulos, C, Majnemer, A, Shevell, Met al. Functional limitations in young children with congenital heart defects after cardiac surgery. Pediatrics 2001; 108 (6): 1325–31.CrossRefGoogle ScholarPubMed
Karl, T, Hall, S, Ford, Get al. Arterial switch with full-flow cardiopulmonary bypass and limited circulatory arrest: neurodevelopmental outcome. J Thorac Cardiovasc Surg 2004; 127 (1): 213–22.CrossRefGoogle ScholarPubMed
McQuillen, P, Hamrick, S, Perez, Met al. Balloon atrial septostomy is associated with preoperative stroke in neonates with transposition of the great arteries. Circulation 2006; 113 (2): 280–5.CrossRefGoogle ScholarPubMed
Te Pas, A, Wezel-Meijler, G, Bökenkamp-Gramann, R, Walther, F. Preoperative cranial ultrasound findings in infants with major congenital heart disease. Acta Paediatr Jpn 2005; 94 (11): 1597–603.CrossRefGoogle ScholarPubMed
Houten, J, Rothman, A, Bejar, R. High incidence of cranial ultrasound abnormalities in full-term infants with congenital heart disease. Am J Perinatol 1996; 13 (1): 47–53.CrossRefGoogle ScholarPubMed
Jouannic, J, Benachi, A, Bonnet, Det al. Middle cerebral artery Doppler in fetuses with transposition of the great arteries. Ultrasound Obstet Gynecol 2002; 20 (2): 122–4.CrossRefGoogle ScholarPubMed
McQuillen, P, Barkovich, A, Hamrick, Set al. Temporal and anatomic risk profile of brain injury with neonatal repair of congenital heart defects. Stroke 2007; 38 (2 Suppl):736–41.CrossRefGoogle ScholarPubMed
Mahle, W, Tavani, F, Zimmerman, Ret al. An MRI study of neurological injury before and after congenital heart surgery. Circulation 2002; 106 (12 Suppl 1): 1109–14.Google ScholarPubMed
Miller, SP, McQuillen, PS, Hamrick, Set al. Abnormal brain development in newborns with congenital heart disease. N Engl J Med 2007; 357 (19): 1928–38.CrossRefGoogle ScholarPubMed
Comi, A. Advances in Sturge-Weber syndrome. Curr Opin Neurol 2006; 19 (2): 124–8.CrossRefGoogle ScholarPubMed
Brenner, R, Sharbrough, F. Electroencephalographic evaluation in Sturge-Weber syndrome. Neurology 1976; 26 (7): 629–32.CrossRefGoogle ScholarPubMed
Vogl, T, Stemmler, J, Bergman, C, Pfluger, T, Egger, E, Lissner, J. MR and MR angiography of Sturge-Weber syndrome. AJNR Am J Neuroradiol 1993; 14 (2): 417–25.Google Scholar
Mentzel, H, Dieckmann, A, Fitzek, C, Brandl, U, Reichenbach, J, Kaiser, W. Early diagnosis of cerebral involvement in Sturge-Weber syndrome using high-resolution BOLD MR venography. Pediatr Radiol 2005; 35 (1): 85–90.CrossRefGoogle ScholarPubMed
Cakirer, S, Yagmurlu, B, Savas, M. Sturge-Weber syndrome: diffusion magnetic resonance imaging and proton magnetic resonance spectroscopy findings. Acta Radiol 2005; 46 (4): 407–10.CrossRefGoogle ScholarPubMed
Evans, A, Widjaja, E, Connolly, D, Griffiths, P. Cerebral perfusion abnormalities in children with Sturge-Weber syndrome shown by dynamic contrast bolus magnetic resonance perfusion imaging. Pediatrics 2006; 117 (6): 2119–25.CrossRefGoogle ScholarPubMed
Grant, E, Williams, A, Schellinger, D, Slovis, T. Intracranial calcification in the infant and neonate: evaluation by sonography and CT. Radiology 1985; 157 (1): 63–8.CrossRefGoogle ScholarPubMed
Wang, H, Kuo, M, Chang, T. Sonographic lenticulostriate vasculopathy in infants: some associations and a hypothesis. AJNR Am J Neuroradiol 1995; 16 (1): 97–102.Google Scholar
Weber, K, Riebel, T, Nasir, R. Hyperechoic lesions in the basal ganglia: an incidental sonographic finding in neonates and infants. Pediatr Radiol 1992; 22 (3): 182–6.CrossRefGoogle ScholarPubMed
Cabañas, F, Pellicer, A, Morales, C, García-Alix, A, Stiris, T, Quero, J. New pattern of hyperechogenicity in thalamus and basal ganglia studied by color Doppler flow imaging. Pediatr Neurol 1994; 10 (2): 109–16.CrossRefGoogle ScholarPubMed
Hughes, P, Weinberger, E, Shaw, D. Linear areas of echogenicity in the thalami and basal ganglia of neonates: an expanded association. Work in progress. Radiology 1991; 179 (1): 103–5.CrossRefGoogle ScholarPubMed
Shefer-Kaufman, N, Mimouni, F, Stavorovsky, Z, Meyer, J, Dollberg, S. Incidence and clinical significance of echogenic vasculature in the basal ganglia of newborns. Am J Perinatol 1999; 16 (6): 315–19.CrossRefGoogle ScholarPubMed
Chamnanvanakij, S, Rogers, C, Luppino, C, Broyles, S, Hickman, J, Perlman, J. Linear hyperechogenicity within the basal ganglia and thalamus of preterm infants. Pediatr Neurol 2000; 23 (2): 129–33.CrossRefGoogle ScholarPubMed
Makhoul, I, Eisenstein, I, Sujov, Pet al. Neonatal lenticulostriate vasculopathy: further characterisation. Arch Dis Child Fetal Neonatal Ed 2003; 88 (5): F410–4.CrossRefGoogle ScholarPubMed
Vries, LS, Gunardi, H, Barth, PG, Bok, , Verboon-Maciolek, MA, Groenendaal, F. The spectrum of cranial ultrasound and magnetic resonance imaging abnormalities in congenital cytomegalovirus infection. Neuropediatrics 2004; Apr;35 (2): 113–19.Google ScholarPubMed
Estroff, J, Parad, R, Teele, R, Benacerraf, B. Echogenic vessels in the fetal thalami and basal ganglia associated with cytomegalovirus infection. J Ultrasound Med 1992; 11 (12): 686–8.CrossRefGoogle ScholarPubMed
Chang, Y, Huang, C, Liu, C. Frequency of linear hyperechogenicity over the basal ganglia in young infants with congenital rubella syndrome. Clin Infect Dis 1996; 22 (3): 569–71.CrossRefGoogle ScholarPubMed
Bode, H, Rudin, C. Calcifying arteriopathy in the basal ganglia in human immunodeficiency virus infection. Pediatr Radiol 1995; 25 (1): 72–3.CrossRefGoogle ScholarPubMed
Virkola, K, Lappalainen, M, Valanne, L, Koskiniemi, M. Radiological signs in newborns exposed to primary Toxoplasma infection in utero. Pediatr Radiol 1997; 27 (2): 133–8.CrossRefGoogle ScholarPubMed
Coley, B, Rusin, J, Boue, D. Importance of hypoxic/ischemic conditions in the development of cerebral lenticulostriate vasculopathy. Pediatr Radiol 2000; 30 (12): 846–55.CrossRefGoogle ScholarPubMed
Vries, L, Beek, F, Stoutenbeek, P. Lenticulostriate vasculopathy in twin-to-twin transfusion syndrome: sonographic and CT findings. Pediatr Radiol 1995; 25(Suppl. 1): S41–2.Google ScholarPubMed
Cabañas, F, Pellicer, A, Valverde, E, Morales, C, Quero, J. Central nervous system vasculopathy in neonatal lupus erythematosus. Pediatr Neurol 1996; 15 (2): 124–6.CrossRefGoogle ScholarPubMed
Ries, M, Deeg, KH, Wölfel, D, Ibel, H, Maier, B, Buheitel, G. Colour Doppler imaging of intracranial vasculopathy in severe infantile sialidosis. Pediatr Radiol 1992; 22 (3): 179–81.CrossRefGoogle ScholarPubMed
Chabra, S, Kriss, VM, Pauly, TH, Hall, BD. Neurosonographic diagnosis of thalamic/basal ganglia vasculopathy in trisomy 13 – an important diagnostic aid. Am J Med Genet 1997; 72 (3): 291–3.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Kriss, V, Kriss, T. Doppler sonographic confirmation of thalamic and basal ganglia vasculopathy in three infants with trisomy 13. J Ultrasound Med 1996; 15 (7): 523–6.CrossRefGoogle ScholarPubMed
Tomà, P, Magnano, G, Mezzano, P, Lazzini, F, Bonacci, W, Serra, G. Cerebral ultrasound images in prenatal cytomegalovirus infection. Neuroradiology 1989; 31 (3): 278–9.CrossRefGoogle ScholarPubMed
Herman, T, Siegel, M. Neurosonographic abnormalities in chromosomal disorders. Pediatr Radiol 1991; 21 (6): 398–401.CrossRefGoogle ScholarPubMed
Pasternak, J, Groothuis, D. Regional variability of blood flow and glucose utilization within the subependymal germinal matrix. Brain Res 1984; 299 (2): 281–8.CrossRefGoogle ScholarPubMed
Barkovich, AJ, Peck, WW. MR of Zellweger syndrome. AJNR Am J Neuroradiol 1997; 18: 1163–70.Google ScholarPubMed
Ben-Ami, T, Yousefzadeh, D, Backus, M, Reichman, B, Kessler, A, Hammerman-Rozenberg, C. Lenticulostriate vasculopathy in infants with infections of the central nervous system sonographic and Doppler findings. Pediatr Radiol 1990; 20 (8): 575–9.CrossRefGoogle ScholarPubMed
Wang, H, Kuo, M. Sonographic lenticulostriate vasculopathy in infancy with tic and other neuropsychiatric disorders developed after 7 to 9 years of follow-up. Brain Dev 2003; 25(Suppl. 1): s43–7.CrossRefGoogle ScholarPubMed
Makhoul, I, Zmora, O, Tamir, A, Shahar, E, Sujov, P. Congenital subependymal pseudocysts: own data and meta-analysis of the literature. Isr Med Assoc J 2001; 3 (3): 178–83.Google ScholarPubMed
Larroche, JC. Sub-ependymal pseudo-cysts in the newborn. Biol Neonate 1972; 21 (3): 170–83.CrossRefGoogle ScholarPubMed
Brun, N, Robitaille, Y, Grignon, A, Robinson, B, Mitchell, G, Lambert, M. Pyruvate carboxylase deficiency: prenatal onset of ischemia-like brain lesions in two sibs with the acute neonatal form. Am J Med Genet 1999; 84 (2): 94–101.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Ramenghi, , Domizio, S, Quartulli, L, Sabatino, G. Prenatal pseudocysts of the germinal matrix in preterm infants. J Clin Ultrasound 1997; 25 (4): 169–73.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Malinger, G, Lev, D, Ben Sira, L, Kidron, D, Tamarkin, M, Lerman-Sagie, T. Congenital periventricular pseudocysts: prenatal sonographic appearance and clinical implications. Ultrasound Obstet Gynecol 2002; 20 (5): 447–51.CrossRefGoogle ScholarPubMed
Rademaker, KJ, Vries, LS, Barth, PG. Subependymal pseudocysts: ultrasound diagnosis and findings at follow-up. Acta Paediatr 1993; 82 (4): 394–9.CrossRefGoogle ScholarPubMed
Mito, T, Ando, Y, Takeshita, K, Takada, K, Takashima, S. Ultrasonographical and morphological examination of subependymal cystic lesions in maturely born infants. Neuropediatrics 1989; 20 (4): 211–14.CrossRefGoogle ScholarPubMed
Shaw, CM, Alvord, EC Jr.Subependymal germinolysis. Arch Neurol 1974; 31 (6): 374–81.CrossRefGoogle ScholarPubMed
Shackelford, GD, Fulling, KH, Glasier, CM. Cysts of the subependymal germinal matrix: sonographic demonstration with pathologic correlation. Radiology 1983; 149 (1): 117–21.CrossRefGoogle ScholarPubMed
Vries, LS, Verboon-Maciolek, MA, Cowan, FM, Groenendaal, F. The role of cranial ultrasound and magnetic resonance imaging in the diagnosis of infections of the central nervous system. Early Hum Dev 2006; 82 (12): 819–25.CrossRefGoogle Scholar
Herini, E, Tsuneishi, S, Takada, S, Sunarini, Nakamura H. Clinical features of infants with subependymal germinolysis and choroid plexus cysts. Pediatr Int 2003; 45 (6): 692–6.CrossRefGoogle ScholarPubMed
Russel, IM, Sonderen, L, Straaten, HL, Barth, PG. Subependymal germinolytic cysts in Zellweger syndrome. Pediatr Radiol 1995; 25 (4): 254–5.CrossRefGoogle ScholarPubMed
Twomey, E, Naughten, E, Donoghue, V, Ryan, S. Neuroimaging findings in glutaric aciduria type 1. Pediatr Radiol 2003; 33 (12): 823–30.CrossRefGoogle ScholarPubMed
Larcos, G, Gruenewald, S, Lui, K. Neonatal subependymal cysts detected by sonography: prevalence, sonographic findings, and clinical significance. AJR Am J Roentgenol 1994; 162 (4): 953–6.CrossRefGoogle ScholarPubMed
Straaten, HL, Tintelen, JP, Trijbels, JMet al. Neonatal lactic acidosis, complex I/IV deficiency, and fetal cerebral disruption. Neuropediatrics 2005; 36 (3): 193–9.CrossRefGoogle ScholarPubMed
Zuppa, AA, Gallini, F, Luca, D, Luciano, R, Frezza, S, Turris, PL, Tortorolo, G. Cerebral ultrasound findings in neonatal lupus syndrome. Biol Neonate 2004; 86 (4): 230–4.CrossRefGoogle ScholarPubMed
Cohen, HL, Sloves, JH, Laungani, S, Glass, L, DeMarinis, P. Neurosonographic findings in full-term infants born to maternal cocaine abusers: visualization of subependymal and periventricular cysts. J Clin Ultrasound 1994; 22 (5): 327–33.CrossRefGoogle ScholarPubMed
Zorzi, C, Angonese, I. Subependymal pseudocysts in the neonate. Eur J Pediatr 1989; 148 (5): 462–4.CrossRefGoogle ScholarPubMed
Yamashita, Y, Outani, Y, Kawano, Y, Horikawa, M, Matsuishi, T, Hashimoto, T. Clinical analyses and short-term prognoses of neonates with subependymal cysts. Pediatr Neurol 1990; 6 (6): 375–8.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×